精英家教网 > 高中数学 > 题目详情
已知{an}是首项为a1=1的等差数列且满足an+1>an(n∈N*),等比数列{bn}的前三项分别为b1=a1+1,b2=a2+1,b3=a3+3.
(Ⅰ)求数列{an}和{bn}的通项公式;
(Ⅱ)若数列{cn}满足(an+3)cnlog2bn=
12
,求数列{cn}的前n项和Sn
分析:(I)设等差数列{an}的公差为d,由通项公式分别把b1、b2、b3表示出来,再由等比中项列出方程,求出d的值,再由数列{an}为单调递增数列进行取舍,再求出公比q,分别代入对应的通项公式化简即可;
(Ⅱ)由(I)和条件求出cn并裂项,代入数列{cn}的前n项和Sn进行化简.
解答:解:(Ⅰ)设等差数列{an}的公差为d,
首项a1=1,b1=2,b2=2+d,b3=4+2d,
∵{bn}为等比数列,∴
b
2
2
=b1b3

即(2+d)2=2(4+2d),解得d=±2,
又∵an+1>an,即数列{an}为单调递增数列,
∴d=2,a2=3,a3=5,∴an=a1+(n-1)d=2n-1,
则b1=2,b2=4,q=2,
bn=b1qn-1=2n
∴an=2n-1,bn=2n
(Ⅱ)由题意得,(an+3)cnlog2bn=
1
2
,再由(1)结果代入,
变形得cn=
1
2(an+3)log2bn
=
1
2n(2n+2)
=
1
2
(
1
2n
-
1
2n+2
)

∴Sn=
1
2
(
1
2
-
1
4
)+
1
2
(
1
4
-
1
6
)+
1
2
(
1
6
-
1
8
)
+…+
1
2
(
1
2n
-
1
2n+2
)

=
1
2
(
1
2
-
1
2n+2
)
=
n
4(n+1)
点评:本题考查了等差(等比)数列的通项公式,以及前n项和公式,裂项相消法求数列的前n项和等,数列求和问题应先求通项公式,根据其特点再选取对应的求和方法.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知{an}是首项为19,公差为-2的等差数列,sn为{an}的前n项和.
(1)求通项an及sn
(2)设{bn-an}是首项为1,公比为3的等比数列,求数列{bn}的通项公式及其前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知{an}是首项为1的等比数列,Sn是{an}的前n项和,且9S3=S6,则数列{
1
an
}
的前5项和为(  )
A、
85
32
B、
31
16
C、
15
8
D、
85
2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知{an}是首项为1的等差数列,其公差d>0,且a3,a7+2,3a9成等比数列.
(1)求数列{an}的通项公式;
(2)设数列{an}的前n项和为Sn,求f(n)=
Sn(n+6) Sn+1
的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知{an}是首项为1的等比数列,sn是{an}的前n项和,且8a3=a6,则数列{an}的前5项和为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知{an}是首项为a1,公比为q(q≠1)的等比数列,其前n项和为Sn,且有
S10
S5
=
33
32
,设bn=2q+Sn
(1)求q的值;
(2)数列{bn}能否为等比数列?若能,请求出a1的值;若不能,请说明理由;
(3)在(2)的条件下,求数列{nbn}的前n项和Tn

查看答案和解析>>

同步练习册答案