精英家教网 > 高中数学 > 题目详情
(2013•临沂二模)
x2
a2
+
y2
b2
=1
(a>b>0)如图,已知椭圆C:的左、右焦点分别为F1、F2,离心率为
3
2
,点A是椭圆上任一点,△AF1F2的周长为4+2
3

(Ⅰ)求椭圆C的方程;
(Ⅱ)过点Q(-4,0)任作一动直线l交椭圆C于M,N两点,记
MQ
QN
,若在线段MN上取一点R,使得
MR
=-λ
RN
,则当直线l转动时,点R在某一定直线上运动,求该定直线的方程.
分析:(I)利用椭圆的定义、e=
c
a
及b2=a2-c2即可解出;
(II)由题意知,直线l的斜率必存在,设其方程为y=k(x+4),M(x1,y1),N(x2,y2).把直线l的方程与椭圆方程联立得到根与系数的关系,再利用向量
MQ
QN
MR
=-λ
RN
,即可得出坐标之间的关系,消去λ及k即可得出结论.
解答:解(Ⅰ)∵△AF1F2的周长为4+2
3

∴2a+2c=4+2
3
,即a+c=2+
3

e=
c
a
=
3
2
,解得a=2,c=
3
,b2=a2-c2=1.
∴椭圆C的方程为
x2
4
+y2=1

(Ⅱ)由题意知,直线l的斜率必存在,
设其方程为y=k(x+4),M(x1,y1),N(x2,y2).
y=k(x+4)
x2
4
+y2=1

得(1+4k2)x2+32k2x+64k2-4=0.
由题意△=(32k22-4(1+4k2)(64k2-4)>0,即12k2-1<0.
x1+x2=
-32k2
1+4k2
x1x2=
64k2-4
1+4k2

MQ
QN
,得(-4-x1,-y1)=(x2+4,y2),
∴-4-x1=λ(x2+4),∴λ=
x1+4
x2+4

设点R的坐标为(x0,y0),由
MR
=-λ
RN

得(x0-x1,y0-y1)=-λ(x2-x0,y2-y0),
∴x0-x1=-λ(x2-x0),
解得x0=
x1x2
1-λ
=
x1+
x1+4
x2+4
x2
1+
x1+4
x2+4
=
2x1x2+4(x1+x2)
(x1+x2)+8

而2x1x2+4(x1+x2)=
64k2-4
1+4k2
+4×
-32k2
1+4k2
=-
8
1+4k2

(x1+x2)+8=
-32k2
1+4k2
+8=
8
1+4k2

x0=
-
8
1+4k2
8
1+4k2
=-1

故点R在定直线x=-1上.
点评:本题考查了椭圆的定义、标准方程及其性质、直线与椭圆相交问题、根与系数的关系、向量的运算性质等基础知识与基本技能,考查了分类讨论的思想方法、推理能力和计算能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•临沂二模)已知函数f(x)=elnx,g(x)=lnx-x-1,h(x)=
1
2
x2

(Ⅰ)求函数g(x)的极大值.
(Ⅱ)求证:存在x0∈(1,+∞),使g(x0)=g(
1
2
)

(Ⅲ)对于函数f(x)与h(x)定义域内的任意实数x,若存在常数k,b,使得f(x)≤kx+b和h(x)≥kx+b都成立,则称直线y=kx+b为函数f(x)与h(x)的分界线.试探究函数f(x)与h(x)是否存在“分界线”?若存在,请给予证明,并求出k,b的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•临沂二模)函数y=esinx(-π≤x≤π)的大致图象为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•临沂二模)已知定义在R上的函数y=f(x)对任意的x都满足f(x+1)=-f(x),当-1≤x<1时,f(x)=x3,若函数g(x)=f(x)-loga|x|至少6个零点,则a取值范围是(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•临沂二模)已知x∈R,ω>0,
u
=(1,sin(ωx+
π
2
)),
v
=(cos2ωx,
3
sinωx)函数f(x)=
u
v
-
1
2
的最小正周期为π.
(Ⅰ)求ω的值;
(Ⅱ)求函数f(x)在区间[0,
π
2
]上的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•临沂二模)某班共有52人,现根据学生的学号,用系统抽样的方法,抽取一个容量为4的样本,已知3号、29号、42号同学在样本中,那么样本中还有一个同学的学号是(  )

查看答案和解析>>

同步练习册答案