精英家教网 > 高中数学 > 题目详情
6.已知一组数据2x1+1,2x2+1,…,2xn+1的方差为8,则数据x1,x2,…,xn的标准差为(  )
A.1B.$\sqrt{2}$C.2D.2$\sqrt{2}$

分析 设数据x1,x2,…,xn的标准差为S,由方差性质得22S2=8,由此能求出结果.

解答 解:设数据x1,x2,…,xn的标准差为S,
∵一组数据2x1+1,2x2+1,…,2xn+1的方差为8,
∴22S2=8,解得S=$\sqrt{2}$.
∴数据x1,x2,…,xn的标准差为$\sqrt{2}$.
故选:B.

点评 本题考查样本数据的标准差的求法,是基础题,解题时要认真审题,注意主差性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

16.如图,在正三角形ABC中,D、E、F分别为各边的中点,H、G、I、J分别为AD、AF、BE、DE的中点,则将△ABC沿DE、EF、DF折成三棱锥后,则异面直线GH与IJ所成的角的大小为(  )
A.$\frac{π}{4}$B.$\frac{π}{6}$C.$\frac{π}{3}$D.$\frac{π}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知f1(x)=sinx+cosx,fn+1(x)是fn(x)的导函数,即f2(x)=f1′(x),f3(x)=f2′(x),…,fn+1(x)=fn′(x),n∈N*,则f2015(x)=-sinx-cosx.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.(x3-$\frac{1}{x}$)4的展开式中x8的系数为-4.(用数字填写答案)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=xlnx-ax2-x.
(1)当a=$\frac{1}{2}$时,证明:f(x)在定义域上为减函数;
(2)若a∈R,讨论函数f(x)的零点情况.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知P是双曲线$\frac{x^2}{9}$-$\frac{y^2}{16}$=1右支上任意一点,M是圆(x+5)2+y2=1上任意一点,设P到双曲线的渐近线的距离为d,则d+|PM|的最小值为(  )
A.8B.9C.$\frac{47}{5}$D.10

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知椭圆C:$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)的离心率为$\frac{{\sqrt{2}}}{2}$,且经过点D(2$\sqrt{2}$,2$\sqrt{2}$).
(1)求C的方程;
(2)若P(x0,y0)是第一象限C上异于点D的动点,过原点向圆(x-x02+(y-y02=8作切线交C于G,H两点,设直线OG,OH的斜率分别为kOG,kOH,证明:2kOGkOH+1=0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.某数学老师对所任教的两个班级各抽取30名学生进行测试,分数分布如表:
分数区间45
[0,30)0.10.2
[30,60)0.20.2
[60,90)0.30.4
[90,120)0.20.1
[120,150]0.20.1
(1)若成绩120分以上为优秀,求从乙班参加测试的成绩在90分以上(含90分)的学生中,随机任取2名学生,恰有1人为优秀的概率;
(2)根据以上数据完成下面的2×2列联表,则犯错概率小于0.1的前提下,是否有足够的把握认为学生的数学成绩优秀与否和班级有关?
优秀不优秀总计
甲班62430
乙班32730
总计95160
参考公式:K2=$\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d.
下面的临界值供参考:
k02.0722.7063.8415.0246.6357.87910.828
P(K2≥k00.150.100.050.0250.0100.0050.001

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知函数f(x)=$\frac{lna+lnx}{x}$在[1,+∞)上为减函数,则实数a的取值范围是(  )
A.a≤eB.0<a≤eC.a≥eD.0<a<$\frac{1}{e}$

查看答案和解析>>

同步练习册答案