精英家教网 > 高中数学 > 题目详情
11.已知P是双曲线$\frac{x^2}{9}$-$\frac{y^2}{16}$=1右支上任意一点,M是圆(x+5)2+y2=1上任意一点,设P到双曲线的渐近线的距离为d,则d+|PM|的最小值为(  )
A.8B.9C.$\frac{47}{5}$D.10

分析 根据题意可得:d+|PM|≥d+|PF1|-1=d+6+|PF2|-1=d+|PF2|+5,d+|PF2|的最小值为F2到渐近线的距离,即可得出结论.

解答 解:设双曲线的左,右焦点分别为F1,F2,根据题意可得:d+|PM|≥d+|PF1|-1=d+6+|PF2|-1=d+|PF2|+5,
d+|PF2|的最小值为F2到渐近线的距离,
因为F2到渐近线y=±$\frac{4}{3}$x的距离为4,所以d+|PM|的最小值为9.
故选:B.

点评 本题考查双曲线的方程与性质,考查点到直线距离公式的运用,正确转化是关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.如图,圆M与圆N交于A、B两点,以A为切点作两圆的切线分别交圆M、圆N于C、D两点,延长DB、CB分别交圆M、圆N于E、F.已知DB=10、CB=5.
(Ⅰ)求AB的长;
(Ⅱ)求证:CF=DE.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.若变量x,y满足不等式组$\left\{\begin{array}{l}{x≥1}\\{y≥1}\\{x+y≤3}\end{array}\right.$,则目标函数z=2x+y 的最大值为(  )
A.3B.4C.5D.6

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.某市因交通堵塞,在周一到周五进行交通限行,周一、周三、周五双号限行,周二、周四单号限行.某单位有双号车两辆,单号车两辆,在限行前,双号车每辆车每天出车的概率为$\frac{2}{3}$,单号车每辆车每天出车的概率为$\frac{1}{2}$,且每辆车出车是相互独立的.
(1)若该单位的某员工需要在周一和周二两天中的一天用车,且这两天用车的可能性相同,求他能出车的概率;
(2)设X表示该单位在周一与周二两天的出车台数之和,求X的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知一组数据2x1+1,2x2+1,…,2xn+1的方差为8,则数据x1,x2,…,xn的标准差为(  )
A.1B.$\sqrt{2}$C.2D.2$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知a,b,c分别为△ABC内角A,B,C的对边,sinA=acosC,c=$\sqrt{3}$.
(1)求角C;
(2)求acosB的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.复数z=$\frac{5-i}{1+2i}$的虚部为(  )
A.$\frac{11}{5}$B.$\frac{11}{5}$iC.-$\frac{11}{5}$D.-$\frac{11}{5}$i

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.定义在R上的函数f(x),其导函数是f′(x),若x•f′(x)+f(x)<0,则下列结论一定正确的是(  )
A.3f(2)<2f(3)B.3f(2)>2f(3)C.2f(2)<3f(3)D.2f(2)>3f(3)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.如图,在斜三棱柱ABC-A1B1C1中,A1B⊥AC,且A1B=AC=5,AA1=BC=13,且AB=12.
(1)求证:平面ABB1A1⊥平面ACC1A1
(2)求二面角A-BB1-C的正切值的大小.

查看答案和解析>>

同步练习册答案