分析 (Ⅰ)根据弦切角定理,推导出△ABC∽△DBA,由此能求出AB的长.
(Ⅱ)根据切割线定理,推导出△ABC∽△DBA,得到得$\frac{AC}{DA}=\frac{AB}{DB}=\frac{{5\sqrt{2}}}{10}=\frac{{\sqrt{2}}}{2},\frac{{C{A^2}}}{{D{A^2}}}=\frac{1}{2}$,由此能求出$\frac{CF}{DE}=1$.
解答 解:(Ⅰ)根据弦切角定理,∠BAC=∠BDA,∠ACB=∠DAB…(1分)
∴△ABC∽△DBA…(2分),
则$\frac{AB}{DB}=\frac{BC}{BA}$…(3分),
故AB2=BC•BD=50…(4分),
$AB=5\sqrt{2}$…(5分)
证明:(Ⅱ)根据切割线定理,知CA2=CB•CF,DA2=DB•DE…(6分)
两式相除,得$\frac{{C{A^2}}}{{D{A^2}}}=\frac{CB}{DB}•\frac{CF}{DE}$(*)…(7分)
由△ABC∽△DBA,得$\frac{AC}{DA}=\frac{AB}{DB}=\frac{{5\sqrt{2}}}{10}=\frac{{\sqrt{2}}}{2},\frac{{C{A^2}}}{{D{A^2}}}=\frac{1}{2}$…(9分)
又$\frac{CB}{DB}=\frac{5}{10}=\frac{1}{2}$,由(*)得$\frac{CF}{DE}=1$,CF=DE…(10分)
点评 本题考查线段长的求法,考查两线段的比值的求法,解题时要认真审题,注意弦切角定理和切割线定理的合理运用.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (-1,-3,-5) | B. | (-1,-3,5) | C. | (1,-3,5) | D. | (-1,3,5) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| x | 1 | 2 | 3 | 4 | 5 |
| y | 2 | 1 | 0 | -1 | -2 |
| A. | a<0,b<0 | B. | a<0,b>0 | C. | a>0,b>0 | D. | a>0,b<0 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{π}{4}$ | B. | $\frac{π}{6}$ | C. | $\frac{π}{3}$ | D. | $\frac{π}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{3(k+1)+1}$ | B. | $\frac{1}{3k+2}$ | ||
| C. | $\frac{1}{3k+2}$+$\frac{1}{3k+3}$+$\frac{1}{3k+4}$-$\frac{1}{k+1}$ | D. | $\frac{1}{3k+4}$-$\frac{1}{k+1}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 8 | B. | 9 | C. | $\frac{47}{5}$ | D. | 10 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com