精英家教网 > 高中数学 > 题目详情
12.空间直角坐标系中点P(1,3,5)关于原点对称的点P′的坐标是(  )
A.(-1,-3,-5)B.(-1,-3,5)C.(1,-3,5)D.(-1,3,5)

分析 根据空间坐标关于点的对称的结论进行求解即可.

解答 解:空间直角坐标系中点P(1,3,5)关于原点对称的点的坐标都有相应的相反数,
即(-1,-3,-5),
故选:A

点评 本题主要考查空间坐标的对称性,空间点的对称实质是中点问题,比较基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

2.每逢节假日,在微信好友群发红包逐渐成为一种时尚.某女士每月发红包的个数y(个)与月收入x(千元)具有线性相关关系,用最小二乘法建立回归方程为$\hat y$=8.9x+0.3,则下列说法不正确的是(  )
A.y与x具有正线性相关关系
B.回归直线必过点($\overline{x}$,$\overline{y}$)
C.该女士月收入增加1000元,则其发红包的数量约增加9个
D.该女士月收入为3000元,则可断定其发红包的数量为27个

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数y=f(x)的图象如图所示,求:
(1)函数y=f(x)的定义域;
(2)函数y=f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知函数f(x)=log2(x2-ax+1+a)在区间(-∞,2)上为减函数,则a的取值范围为(  )
A.[4,+∞)B.[4,5]C.(4,5)D.[4,5)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.几何体的俯视图为一边长为2的正三角形,则该几何体的各个面中,面积最大的面的面积为(  )
A.3B.$\sqrt{6}$C.2D.$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知A(x1,y1),B(x2,y2)是函数f(x)=$\left\{\begin{array}{l}{\frac{2x}{1-2x},x≠\frac{1}{2}}\\{-1,x=\frac{1}{2}}\end{array}\right.$的图象上的任意两点(可以重合),点M在直线x=$\frac{1}{2}$上,且$\overrightarrow{AM}$=$\overrightarrow{MB}$.
(1)求x1+x2的值及y1+y2的值;
(2)已知S1=0,当n≥2时,Sn=f($\frac{1}{n}$)+f($\frac{2}{n}$)+f($\frac{3}{n}$)+…+f($\frac{n-1}{n}$),求Sn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.在△ABC中,角A、B、C所对的边分别为a、b、c,已知a=2,c=3,cosB=$\frac{1}{4}$,则sinC的值为$\frac{3\sqrt{6}}{8}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.如图,圆M与圆N交于A、B两点,以A为切点作两圆的切线分别交圆M、圆N于C、D两点,延长DB、CB分别交圆M、圆N于E、F.已知DB=10、CB=5.
(Ⅰ)求AB的长;
(Ⅱ)求证:CF=DE.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.若变量x,y满足不等式组$\left\{\begin{array}{l}{x≥1}\\{y≥1}\\{x+y≤3}\end{array}\right.$,则目标函数z=2x+y 的最大值为(  )
A.3B.4C.5D.6

查看答案和解析>>

同步练习册答案