精英家教网 > 高中数学 > 题目详情
5.经过直线3x-y=2和2x+y=3交点,且与y=2x平行的直线方程y=2x-1.

分析 根据题意,求出两直线的交点坐标,再由两直线平行,斜率相等,
利用点斜式写出直线方程即可.

解答 解:由题意,得$\left\{\begin{array}{l}{3x-y=2}\\{2x+y=3}\end{array}\right.$,
解得$\left\{\begin{array}{l}{x=1}\\{y=1}\end{array}\right.$,
∴过两直线交点(1,1)且与y=2x平行的直线方程为
y-1=2(x-1),
化简得y=2x-1.
故答案为:y=2x-1.

点评 本题考查了求直线方程的应用问题,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

15.将八进制数55(8) 化为二进制结果为101101(2)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知向量$\overrightarrow{a}$=($\sqrt{3}$,1),$\overrightarrow{b}$是不平行于x轴的单位向量,且$\overrightarrow{a}$•$\overrightarrow{b}$=$\sqrt{3}$,则$\overrightarrow{b}$=(  )
A.($\frac{\sqrt{3}}{2}$,$\frac{1}{2}$)B.($\frac{1}{2}$,$\frac{\sqrt{3}}{2}$)C.($\frac{1}{4}$,$\frac{3\sqrt{3}}{4}$)D.(1,0)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.一个几何体的正视图和侧视图如图所示,则其俯视图不可能是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.PM2.5是指空气中直径小于或等于2.5微米的颗粒物(也称可入肺颗粒物).为了探究车流量与PM2.5的浓度是否相关,现采集到我市周一至周五某一时间段车流量与PM2.5的数据如表
时间周一周二周三周四周五
车流量x(万辆)5955525158
PM2.5的浓度平均值y(微克/立方米)8167665977
(Ⅰ)根据表中数据,用最小二乘法求出y关于x的线性回归方程$\widehat{y}$=$\widehat{b}$x+$\widehat{a}$;
(Ⅱ)规定当一天内PM2.5的浓度平均值在(0,35]内,空气质量等级为优;当一天内PM2.5的浓度平均值在(35,75]内,空气质量等级为良.为使我国某日空气质量等级为优或良,则应控制当天车流量在多少万辆以内?(结果保留整数)
附:线性回归方程$\widehat{y}$=$\widehat{b}$x+$\widehat{a}$中,$\widehat{b}$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$,$\widehat{a}$=$\overline{y}$-$\widehat{b}$$\overline{x}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.化简$\frac{cos(α-π)tan(α-2π)tan(2π-α)}{sin(π+α)}$的结果是(  )
A.tan2αB.-tan2αC.tanαD.-tanα

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知M(x0,y0)是双曲线C:$\frac{{x}^{2}}{2}$-y2=1上的一点,F1、F2是C上的两个焦点,若$\overrightarrow{M{F}_{1}}$•$\overrightarrow{M{F}_{2}}$<0,则y0的取值范围是-$\frac{\sqrt{3}}{3}$<y0<$\frac{\sqrt{3}}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.设α∈(-$\frac{π}{2}$,0),cosα=$\frac{1}{2}$,则tan(α+$\frac{π}{6}$)=(  )
A.$\sqrt{3}$B.$-\sqrt{3}$C.$-\frac{{\sqrt{3}}}{3}$D.$\frac{{\sqrt{3}}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.(理科)已知数列{an}满足:a1=3,且an+1=2an-1(n∈N
(1)求数列{an}的通项公式  
(2)令bn=$\frac{1}{{a}_{n+1}-{a}_{n}}$(n∈N),求数列{bn}的前n项和Sn

查看答案和解析>>

同步练习册答案