精英家教网 > 高中数学 > 题目详情
C
m-1
n
C
m
n
C
m+1
n
=1:3:5
,则n=
7
7
,m=
2
2
分析:利用组合数公式,结合比值,建立方程,即可得到结论.
解答:解:∵
C
m-1
n
C
m
n
C
m+1
n
=1:3:5

n!
(m-1)!(n-m+1)!
n!
m!(n-m)!
n!
(m+1)!(n-m-1)!
=1:3:5,
m
n-m+1
=
1
3
m+1
n-m
=
3
5

解得n=7,m=2
故答案为:7,2
点评:本题考查组合数公式,考查学生的计算能力,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

规定Cmx=
x(x-1)…(x-m+1)
m!
,其中x∈R,m是正整数,且C0x=1,这是组合数Cmn(n、m是正整数,且m≤n)的一种推广.
(1)求C3-15的值;
(2)设x>0,当x为何值时,
C
3
x
(C
1
x
)2
取得最小值?
(3)组合数的两个性质;
①Cmn=Cn-mm. ②Cmn+Cm-1n=Cmn+1
是否都能推广到Cmx(x∈R,m是正整数)的情形?若能推广,则写出推广的形式并给出证明;若不能,则说明理由.
变式:规定Axm=x(x-1)…(x-m+1),其中x∈R,m为正整数,且Ax0=1,这是排列数Anm(n,m是正整数,且m≤n)的一种推广.
(1)求A-153的值;
(2)排列数的两个性质:①Anm=nAn-1m-1,②Anm+mAnm-1=An+1m.(其中m,n是正整数)是否都能推广到Axm(x∈R,m是正整数)的情形?若能推广,写出推广的形式并给予证明;若不能,则说明理由;
(3)确定函数Ax3的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

规定
C
m
x
=
x(x-1)…(x-m+1)
m!
,其中x∈R,m是正整数,且
C
0
x
=1
,这是组合数
C
m
n
(n、m是正整数,且m≤n)的一种推广.
(1)求
C
3
-15
的值;
(2)设x>0,当x为何值时,
C
3
x
(
C
1
x
)
2
取得最小值?
(3)组合数的两个性质;①
C
m
n
=
C
n-m
n
;②
C
m
n
+
C
m-1
n
=
C
m
n+1
.是否都能推广到
C
m
x
(x∈R,m是正整数)的情形?若能推广,则写出推广的形式并给出证明;若不能,则说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

Cm-1n
Cmn
Cm+1n
=1:3:5
,则n=______,m=______.

查看答案和解析>>

科目:高中数学 来源:2011年云南省高三数学一轮复习章节练习:计数原理(解析版) 题型:解答题

规定Cmx=,其中x∈R,m是正整数,且Cx=1,这是组合数Cmn(n、m是正整数,且m≤n)的一种推广.
(1)求C3-15的值;
(2)设x>0,当x为何值时,取得最小值?
(3)组合数的两个性质;
①Cmn=Cn-mm. ②Cmn+Cm-1n=Cmn+1
是否都能推广到Cmx(x∈R,m是正整数)的情形?若能推广,则写出推广的形式并给出证明;若不能,则说明理由.
变式:规定Axm=x(x-1)…(x-m+1),其中x∈R,m为正整数,且Ax=1,这是排列数Anm(n,m是正整数,且m≤n)的一种推广.
(1)求A-153的值;
(2)排列数的两个性质:①Anm=nAn-1m-1,②Anm+mAnm-1=An+1m.(其中m,n是正整数)是否都能推广到Axm(x∈R,m是正整数)的情形?若能推广,写出推广的形式并给予证明;若不能,则说明理由;
(3)确定函数Ax3的单调区间.

查看答案和解析>>

同步练习册答案