精英家教网 > 高中数学 > 题目详情
在△ABC中,三内角A、B、C及其对边a、b、c,满足a2-b2=
3
bc,sinC=
3
sinB
(Ⅰ)求角C的大小
(Ⅱ)若c=6,求△ABC面积.
分析:(I)由根据正弦定理结合sinC=
3
sinB,得c=
3
b
,代入a2-b2=
3
bc算出a=2b,从而得到△ABC是以a为斜边的直角三角形,利用特殊三角函数值可得角C的大小;
(II)由(I)得若c=6,则Rt△ABC的两条直角边分别为6和2
3
,即可得到△ABC面积.
解答:解:(Ⅰ)∵在△ABC中,sinC=
3
sinB,∴根据正弦定理,得c=
3
b

又∵a2-b2=
3
bc,∴a2-b2=3b2,解之得a=2b
∴△ABC中,a:b:c=2:1:
3
,可得a2=b2+c2
△ABC是以a为斜边的直角三角形,
∵sinC=
c
a
=
3
2
,∴C=60°   …(5分)
(Ⅱ)由(I)得a:b:c=2:1:
3

∴根据c=6,得b=2
3

∴Rt△ABC面积S=
1
2
bc=
1
2
×6×2
3
=6
3
…(9分)
点评:本题给出△ABC中的边的关系和角的关系式,求角C的大小并依此求三角形面积,着重考查了利用正弦定理、余弦定理解三角形和三角形面积公式等知识,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
3
sin2ω+2cos2ωx-1(ω>0)的最小正周期为2π.
(1)当x∈R时,求f(x)的值域;
(2)在△ABC中,三内角A、B、C所对的边分别是a、b、c,已知f(A)=1,a=2
7
,sinB=2sinC,求△ABC的面积S.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,三内角A,B,C的对边分别为a,b,c且满足(2b-c)cosA=acosC
(Ⅰ)求角A的大小;
(Ⅱ)若|
AC
-
AB
|=1,求△ABC周长l的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=sin(
6
-2x)+2cos2x-1(x∈R)

(I)求函数f(x)的周期及单调递增区间;
(II)在△ABC中,三内角A,B,C的对边分别为a,b,c,已知点(A,
1
2
)
经过函数f(x)的图象,b,a,c成等差数列,且
AB
AC
=9
,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,三内角A、B、C所对应的边长分别为a、b、c,且A、B、C成等差数列,b=
3
,则△ABC的外接圆半径为 (  )

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,三内角A、B、C所对的边分别为a、b、c,设向量
m
=(b-c,c-a)
n
=(b, c+a)
,若向量
m
n
,则角A的大小为(  )
A、
π
6
B、
π
3
C、
π
2
D、
3

查看答案和解析>>

同步练习册答案