(本小题满分14分)
如图,椭圆
(a>b>0)的一个焦点为F(1,0),且过点(2,0).
(Ⅰ)求椭圆C的方程;
(Ⅱ)若AB为垂直于x轴的动弦,直线l:x=4与x轴交于点N,直线AF与BN交于点M.
(ⅰ)求证:点M恒在椭圆C上;
(ⅱ)求△AMN面积的最大值.![]()
(1)椭圆C方程为
.(2)同解析
解析![]()
解法一:
(Ⅰ)由题设a=2,c=1,从而b2=a2-c2=3,
所以椭圆C方程为
.
(Ⅱ)(i)由题意得F(1,0),N(4,0).
设A(m,n),则B(m,-n)(n≠0),
="1." ……①
AF与BN的方程分别为:n(x-1)-(m-1)y=0,
n(x-4)-(m-4)y=0.
设M(x0,y0),则有 n(x0-1)-(m-1)y0="0," ……②
n(x0-4)+(m-4)y0="0," ……③
由②,③得
x0=
.
所以点M恒在椭圆G上.![]()
(ⅱ)设AM的方程为x=xy+1,代入
=1得(3t2+4)y2+6ty-9=0.
设A(x1,y1),M(x2,y2),则有:y1+y2=![]()
|y1-y2|=![]()
令3t2+4=λ(λ≥4),则
|y1-y2|=
因为λ≥4,0<![]()
|y1-y2|有最大值3,此时AM过点F.
△AMN的面积S△AMN=![]()
解法二:
(Ⅰ)问解法一:
(Ⅱ)(ⅰ)由题意得F(1,0),N(4,0).
设A(m,n),则B(m,-n)(n≠0),
……①
AF与BN的方程分别为:n(x-1)-(m-1)y="0, " ……②
n(x-4)-(m-4)y="0, " ……③
由②,③得:当≠
. ……④
由④代入①,得
=1(y≠0).
当x=
时,由②,③得:![]()
解得
与a≠0矛盾.
所以点M的轨迹方程为
即点M恒在锥圆C上.
(Ⅱ)同解法一.
科目:高中数学 来源: 题型:
| 3 |
| π |
| 4 |
| π |
| 4 |
| π |
| 2 |
查看答案和解析>>
科目:高中数学 来源: 题型:
(本小题满分14分)设椭圆C1的方程为
(a>b>0),曲线C2的方程为y=
,且曲线C1与C2在第一象限内只有一个公共点P。(1)试用a表示点P的坐标;(2)设A、B是椭圆C1的两个焦点,当a变化时,求△ABP的面积函数S(a)的值域;(3)记min{y1,y2,……,yn}为y1,y2,……,yn中最小的一个。设g(a)是以椭圆C1的半焦距为边长的正方形的面积,试求函数f(a)=min{g(a), S(a)}的表达式。
查看答案和解析>>
科目:高中数学 来源:2011年江西省抚州市教研室高二上学期期末数学理卷(A) 题型:解答题
(本小题满分14分)
已知
=2,点(
)在函数
的图像上,其中
=
.
(1)证明:数列
}是等比数列;
(2)设
,求
及数列{
}的通项公式;
(3)记
,求数列{
}的前n项和
,并证明
.
查看答案和解析>>
科目:高中数学 来源:2015届山东省威海市高一上学期期末考试数学试卷(解析版) 题型:解答题
(本小题满分14分)
某网店对一应季商品过去20天的销售价格及销售量进行了监测统计发现,第
天(
)的销售价格(单位:元)为
,第
天的销售量为
,已知该商品成本为每件25元.
(Ⅰ)写出销售额
关于第
天的函数关系式;
(Ⅱ)求该商品第7天的利润;
(Ⅲ)该商品第几天的利润最大?并求出最大利润.
查看答案和解析>>
科目:高中数学 来源:2011-2012学年广东省高三下学期第一次月考文科数学试卷(解析版) 题型:解答题
(本小题满分14分)已知
的图像在点
处的切线与直线
平行.
⑴ 求
,
满足的关系式;
⑵ 若
上恒成立,求
的取值范围;
⑶ 证明:
(
)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com