精英家教网 > 高中数学 > 题目详情
(选做题)
如图圆O和圆O′相交于A,B两点,AC是O′圆的切线,AD 是圆O的切线,若BC=2,AB=4,求BD。

解:易证
所以
BD=8。
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•深圳二模)(几何证明选讲选做题)如图,AB是圆O的直径,弦AD和BC相交于点P,连接CD.若∠APB=120°,则
CD
AB
等于
1
2
1
2

查看答案和解析>>

科目:高中数学 来源: 题型:

选做题(请考生在以下三个小题中任选一题作答,如果多做,则按所做的第一题评阅记分)
A.(选修4-4坐标系与参数方程)若M,N分别是曲线ρ=2cosθ和ρsin(θ-
π
4
)=
2
2
上的动点,则M,N两点间的距离的最小值是
2
-1
2
-1

B.(选修4-5 不等式选讲)若不等式|x+
1
x
|>|a-2|+1
对于一切非零实数x均成立,则实数a的取值范围为
1<a<3
1<a<3

C.(选修4-1 几何证明选讲)(几何证明选做题)如图,圆O的割线PBA过圆心O,弦CD交AB于点E,且△COE~△PDE,PB=OA=2,则PE的长等于
3
3

查看答案和解析>>

科目:高中数学 来源:高考真题 题型:证明题

(选做题)如图,⊙O和⊙O'相交于A,B两点,过A作两圆的切线分别交两圆于C、D两点,连接DB并延长交⊙O于点E。
证明:(1)AC·BD=AD·AB;
(2)AC=AE。

查看答案和解析>>

科目:高中数学 来源:高考真题 题型:证明题

(选做题)如图,⊙O和⊙O′相交于A,B两点,过A作两圆的切线分别交两圆于C,D两点,连接DB并延长交⊙O于点E,证明:
(1)AC·BD=AD·AB;
(2)AC=AE。

查看答案和解析>>

同步练习册答案