精英家教网 > 高中数学 > 题目详情
如图,已知在正方体ABCD- A1B1C1D1中,E为AB的中点。
(1)求直线B1C与DE所成角的余弦值;
(2)求证:平面EB1D⊥平面B1CD;
(3)求二面角E-B1C-D的余弦值。
解:(1)如图,连接A,D,则由A1D∥B1C知,B1C与DE所成的角即为A1D与DE所成的角,
连接A1E,设正方体ABCD-A1B1C1D1的棱长为a,则

∴直线B1C与DE所成角的余弦值是
(2)取B1C的中点F,B1D的中点G,连接BF,EG,GF
∵CD⊥平面BCC1B1,且BF平面BCC1B1
∴CD⊥BF
又∵BF⊥B1C,CD∩B1C=C,
∴BF⊥平面B1CD
又∵

∴四边形BFGE是平行四边形,
∴BF∥GE,
∴GE⊥平面B1CD
∵GE平面EB1D,
∴平面EB1D⊥平面B1CD。
(2)连接EF
∵CD⊥B1C,GF∥CD,
∴GF⊥B1C
又∵GE⊥平面B1CD,
∴EF⊥B1C,
∴∠EFG是二面角E-B1C-D的平面角,
设正方体的棱长为a,则在△EFC中,

∴二面角E-B1C-D的余弦值
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网(甲)如图,已知斜三棱柱ABC-A1B1C1的侧面A1C⊥底面ABC,∠ABC=90°,BC=2,AC=2
3
,又AA1⊥A1C,AA1=A1C.
(1)求侧棱A1A与底面ABC所成的角的大小;
(2)求侧面A1B与底面所成二面角的大小;
(3)求点C到侧面A1B的距离.
(乙)在棱长为a的正方体OABC-O'A'B'C'中,E,F分别是棱AB,BC上的动点,且AE=BF.
(1)求证:A'F⊥C'E;
(2)当三棱锥B'-BEF的体积取得最大值时,求二面角B'-EF-B的大小(结果用反三角函数表示).

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知魔方ABCD-EFGH,一只在点A处蚂蚁先从前面ABFE,再从右面BCGF爬到点G的最短爬法(蚂蚁只能沿每个小正方体的棱爬行)共有(  )种.

查看答案和解析>>

科目:高中数学 来源: 题型:

(理科做)如图,已知棱长为a的正方体ABCD-A1B1C1D1中,P是棱AA1上的一点,且A1P:PA=m:n.
(I)在AB上找出一点Q,使C1P⊥PQ;
(II)求当C1P⊥PQ时,线段AQ的长.

查看答案和解析>>

科目:高中数学 来源:设计必修二数学人教A版 人教A版 题型:047

如图,已知在正方体ABCD-中,面对角线A、B上分别有两点E、F,且E=F.

求证:(1)EF∥平面ABCD.

(2)平面AC∥平面

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知在正方体ABCD—A′B′C′D′中,面对角线AB′、BC′上分别有两点EF,且B′E=C′F,

求证:(1)EF∥平面ABCD

(2)平面ACD′∥平面A′BC′.

查看答案和解析>>

同步练习册答案