精英家教网 > 高中数学 > 题目详情
已知函数,函数的图像在点处的切线平行于轴.
(1)求的值;
(2)求函数的极小值;
(3)设斜率为的直线与函数的图象交于两点,(),证明:
(1) ;(2);(3)证明过程详见解析.

试题分析:本题考查函数与导数及运用导数求切线方程、单调区间、最值等数学知识和方法,突出考查综合运用数学知识和方法分析问题解决问题的能力.第一问,对求导,将代入得到切线的斜率,由已知得,即,所以;第二问,利用第一问的结论得到的解析式,对求导,判断函数的单调性和极值;第三问,先用分析法得出与结论等价的式子,即,先证不等式的右边,构造函数,通过求导数判断函数的单调性,求出最大值,所以,即,再证不等式的左边,同样构造函数,通过求导,求出最小值,即,即,综合上述两部分的证明可得.
试题解析:(1)依题意得,则
由函数的图象在点处的切线平行于轴得:
 .
(2)由(1)得 
∵函数的定义域为,令
函数上单调递增,在单调递减;在上单调递增.故函数的极小值为
(3)证法一:依题意得
要证,即证
,即证 
),即证
)则
在(1,+)上单调递减,
 即                 ①
)则
在(1,+)上单调递增,
=0,即)                 ②
综①②得),即
【证法二:依题意得

,当时,,当时,
单调递增,在单调递减,又
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知函数.
(1)当时,求的极值;(2)当时,讨论的单调性;
(3)若对任意的恒有成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知
(1)若存在使得≥0成立,求的范围
(2)求证:当>1时,在(1)的条件下,成立

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数为自然对数的底数).
(1)当时,求的单调区间;
(2)对任意的恒成立,求的最小值;
(3)若对任意给定的,在上总存在两个不同的,使得成立,求的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设函数,其中
(I)若函数图象恒过定点P,且点P关于直线的对称点在的图象上,求m的值;
(Ⅱ)当时,设,讨论的单调性;
(Ⅲ)在(I)的条件下,设,曲线上是否存在两点P、Q,使△OPQ(O为原点)是以O为直角顶点的直角三角形,且斜边的中点在y轴上?如果存在,求a的取值范围;如果不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=x-ln(x+a)的最小值为0,其中a>0.
(1)求a的值;
(2)若对任意的x∈[0,+∞),有f(x)≤kx2成立,求实数k的最小值;

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数
(Ⅰ)判断函数上的单调性,并用定义加以证明;
(Ⅱ)若对任意,总存在,使得成立,求实数的取值范围

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数.
(1)若函数满足,且在定义域内恒成立,求实数b的取值范围;
(2)若函数在定义域上是单调函数,求实数的取值范围;
(3)当时,试比较的大小.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知,记的大小关系是(   )
A.B.C.D.

查看答案和解析>>

同步练习册答案