精英家教网 > 高中数学 > 题目详情
已知函数
(Ⅰ)判断函数上的单调性,并用定义加以证明;
(Ⅱ)若对任意,总存在,使得成立,求实数的取值范围
(Ⅰ)函数上的单调递增  (Ⅱ)实数的取值范围

试题分析:(Ⅰ)利用函数的单调性的定义判断:先由,然后利用判断出单调性,本题的关键在于:先把转化成因式乘积的形式,继而判断每一个因式的符号,最后得到,即 
(Ⅱ)先由,得到,然后利用上的单调递增,得到,只需,利用子集的性质得到的取值范围 
试题解析:(Ⅰ)函数上的单调递增    1分
证明如下:设,则
    2分
 
,即,    2分
函数上的单调递增      1分
(Ⅱ)由(Ⅰ)知,当时,,    1分
上的单调递增,
时,    1分
依题意,只需    2分
,解得,即 实数的取值范围    2分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知.
(Ⅰ)请写出的表达式(不需证明);
(Ⅱ)求的极小值
(Ⅲ)设的最大值为的最小值为,试求的最小值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数
(Ⅰ)求的单调区间;
(Ⅱ)若,证明当时,函数的图象恒在函数图象的上方.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数,函数的图像在点处的切线平行于轴.
(1)求的值;
(2)求函数的极小值;
(3)设斜率为的直线与函数的图象交于两点,(),证明:

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数试讨论的单调性.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数
(1)写出函数的单调区间;
(2)若恒成立,求实数的取值范围;
(3)若函数上值域是,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数
(1)若且函数在区间上存在极值,求实数的取值范围;
(2)如果当时,不等式恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数.
(Ⅰ)若,求的极值;
(Ⅱ)若在定义域内无极值,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

函数的导函数为             

查看答案和解析>>

同步练习册答案