(本题满分14分) 已知矩形ABCD,AD=2AB=2,点E是AD的中点,将△DEC
沿CE折起到△D’EC的位置,使二面角D'-EC -B是直二面角。
(Ⅰ) 证明:BE⊥CD’;
(Ⅱ) 求二面角D'-BC -E的余弦值,
解:(Ⅰ)∵AD=2AB=2,E是AD的中点,
∴△BAE,△CDE是等腰直角三角形,∠BEC=90°,即
又∵平面D'EC⊥平面BEC,面D'EC∩面BEC=EC
∴BE⊥面D'EC,∴BE⊥CD’. ……………4分
(Ⅱ)法一:设M是线段EC的中点,过M作MF⊥BC
垂足为F,连接D’M,D'F,则D'M⊥EC.
∵平面D'EC⊥平面BEC ∴D'M⊥平面EBC
∴MF是D'F在平面BEC上的射影,由三垂线定理得:D'F⊥BC
∴∠D'FM是二面D'-BC-E的平面角.…………8分
在Rt△D'MF中,,
,
∴二面角D’-BC—E的余弦值为 …………………………………………………14分,
法二:如图,以EB,EC为x轴、y轴,过E垂直于平面BEC的射线为z轴,建立空间直角坐标系.
则 ……………8分
设平面BEC的法向量为;平面D'BC的法向量为
,
取x2=l………12分
得
∴二面角D'-BC-E的余弦值为………………14分
解析
科目:高中数学 来源: 题型:
π |
3 |
|
查看答案和解析>>
科目:高中数学 来源: 题型:
(本题满分14分)如图,四边形ABCD为矩形,AD⊥平面ABE,AE=EB=BC=2,为上的点,且BF⊥平面ACE.
(1)求证:AE⊥BE;(2)求三棱锥D-AEC的体积;(3)设M在线段AB上,且满足AM=2MB,试在线段CE上确定一点N,使得MN∥平面DAE.
查看答案和解析>>
科目:高中数学 来源:2011-2012学年江苏省高三上学期期中考试数学 题型:解答题
(本题满分14分)已知集合A={x|x2-2x-3≤0,x∈R},B={x|x2-2mx+m2-4≤0,x∈R,m∈R}
(Ⅰ)若AB=[0,3],求实数m的值
(Ⅱ)若ACRB,求实数m的取值范围
查看答案和解析>>
科目:高中数学 来源:2010-2011学年福建省高三上学期第三次月考理科数学卷 题型:解答题
(本题满分14分)
已知点是⊙:上的任意一点,过作垂直轴于,动点满足。
(1)求动点的轨迹方程;
(2)已知点,在动点的轨迹上是否存在两个不重合的两点、,使 (O是坐标原点),若存在,求出直线的方程,若不存在,请说明理由。
查看答案和解析>>
科目:高中数学 来源:2014届江西省高一第二学期入学考试数学 题型:解答题
(本题满分14分)已知函数.
(1)求函数的定义域;
(2)判断的奇偶性;
(3)方程是否有根?如果有根,请求出一个长度为的区间,使
;如果没有,请说明理由?(注:区间的长度为).
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com