精英家教网 > 高中数学 > 题目详情
7.已知向量$\overrightarrow m=({sinx,1}),\overrightarrow{\;n}=({\sqrt{3}Acosx,\frac{A}{2}cos2x})({A>0})$,函数$f(x)=\overrightarrow m•\overrightarrow n$的最大值为6.
(1)求A的值及函数图象的对称轴方程和对称中心坐标;
(2)将函数y=f(x)的图象向左平移$\frac{π}{12}$个单位,再将所得的图象上各点的横坐标缩短为原来的$\frac{1}{2}$倍,纵坐标不变,得到函数y=g(x)的图象,求g(x)在$[{0,\frac{5π}{24}}]$上的值域.

分析 (1)根据向量的数量积公式和三角形函数的化简求出f(x),再求出对称轴方程和对称中心坐标,
(2)根据图象的变换可得g(x),再根据正弦函数的性质求出函数的值域.

解答 解:(1)∵$\overrightarrow m=({sinx,1}),\overrightarrow{\;n}=({\sqrt{3}Acosx,\frac{A}{2}cos2x})({A>0})$,
∴$f(x)=\overrightarrow m•\overrightarrow n$=$\sqrt{3}$Asinxcosx+$\frac{A}{2}$cos2x=Asin(2x+$\frac{π}{6}$),
∵函数$f(x)=\overrightarrow m•\overrightarrow n$的最大值为6,
∴A=6,
∴对称轴方程为$x=\frac{π}{6}+\frac{kπ}{2}\;,\;k∈Z$,对称中心坐标为$(-\frac{π}{12}+\frac{kπ}{2},0),k∈Z$;
(2)∵函数y=f(x)的图象向左平移$\frac{π}{12}$个单位,
再将所得的图象上各点的横坐标缩短为原来的$\frac{1}{2}$倍,纵坐标不变,
∴$g(x)=6sin(4x+\frac{π}{3})$,
∵x∈$[{0,\frac{5π}{24}}]$,
∴4x+$\frac{π}{3}$∈[$\frac{π}{3}$,$\frac{7π}{6}$],
∴sinx∈[-$\frac{1}{2}$,1],
∴值域为[-3,6].

点评 本题考查了平面向量的数量积及三角函数的化简与其性质的应用,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

17.执行如图所示的程序框图,若输入的n值为7,则输出的S值为(  )
A.$\sqrt{7}$B.2$\sqrt{2}$C.3D.$\sqrt{10}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.设数列{an}是公差大于0的等差数列,Sn为数列{an}的前n项和.已知S3=9,且2a1,a3-1,a4+1构成等比数列.
(1)求数列{an}的通项公式;
(2)若数列{bn}满足bn=$\frac{1}{{{a_n}{a_{n+1}}}}$(n∈N*),设Tn要是数列{bn}在前n项和,证明:$\frac{1}{3}$≤Tn<$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知数列{an}的通项公式an=11-2n.
(1)求数列{an}的前n项和Sn
(2)若设Tn=|a1|+|a2|+…+|an|,求Tn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知定义在R上的奇函数f(x),当x≥0时,f(x)=$\left\{\begin{array}{l}{lo{g}_{\frac{1}{2}}(x+1),x∈[0,1)}\\{1-|x-3|,x∈[1,+∞)}\end{array}\right.$,若关于x的函数F(x)=f(x)-a有5个零点,则实数a的取值范围是(-1,1).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知在△ABC中,内角A,B,C的对边分别为a,b,c,且acosC,bcosA,ccosA成等差数列.
(1)求角A的大小;
(2)若a=3,$\overrightarrow{AD}=\frac{1}{2}(\overrightarrow{AB}+\overrightarrow{AC})$,求$|\overrightarrow{AD}|$的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.如图,在△ABC中,点D在BC边上,α=∠BAD,(1+tanα)(1+tanβ)=2,cosC=$\frac{3}{5}$.
(Ⅰ)求∠ADB的值;
(Ⅱ)若BD=2,DC=7,求AB边的长.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知定义在(-∞,3]上单调减函数f(x)使得f(1+sin2x)≤f(a-2cosx)对一切实数x都对立,则a的取值范围为(  )
A.(-∞,-1]B.(-∞,1]C.[-1,+∞)D.[1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.如图所示,在正方体ABCD-A1B1C1D1中,O为底面ABCD的中心,P是DD1的中点,设Q是CC1上的点.
(1)当点Q在什么位置时,平面D1BQ∥平面PAO?
(2)异面直线B1C与D1B所成角.

查看答案和解析>>

同步练习册答案