精英家教网 > 高中数学 > 题目详情
在三棱柱ABC-A1B1C1中,CC1⊥平面ABC,∠ACB=90°,AB=2,BC=1,AA1=
3

(1)求证:A1C⊥平面AB1C1
(2)求A1B1与平面AB1C1所成的角的正弦值.
分析:(1)Rt△ABC中算出AC=
AB2-BC2
=
3
,而矩形AA1C1C中AC=
3
,得到四边形AA1C1C为正方形,从而AC1⊥A1C.再由线面垂直的判定与性质,证出B1C1⊥A1C.由B1C1、AC1是平面AB1C1内的相交直线,得A1C⊥平面AB1C1
(2)设AC1、A1C的交点为O,连结B1O.由(1)A1C⊥平面AB1C1,得∠A1B1O就是A1B1与平面AB1C1所成的角,在Rt△A1B1C1中,算出A10和A1B1的长,利用三角函数的定义算出sin∠A1B1O=
6
6
,即可得出A1B1与平面AB1C1所成的角的正弦值.
解答:解:(1)∵△ABC中,∠ACB=90°,AB=2,BC=1,
∴AC=
AB2-BC2
=
3

∵三棱柱ABC-A1B1C1中,CC1⊥平面ABC,AC?平面ABC
∴CC1⊥AC,得四边形AA1C1C为矩形,
∵AA1=AC=
3
,可得四边形AA1C1C为正方形
∴AC1⊥A1C,
∵B1C1⊥A1C1,B1C1⊥C1C,且A1C1∩C1C=C1
∴B1C1⊥平面AA1C1C,
∵A1C?平面AA1C1C,∴B1C1⊥A1C
∵B1C1、AC1是平面AB1C1内的相交直线,∴A1C⊥平面AB1C1
(2)设AC1、A1C的交点为O,连结B1O
∵A1C⊥平面AB1C1,即A10⊥平面AB1C1,∴∠A1B1O就是A1B1与平面AB1C1所成的角
∵正方形AA1C1C的边长AC=
3
,∴A10=
2
2
AC=
6
2

∵Rt△A1B1C1中,A1B1=AB=3,
∴sin∠A1B1O=
A1O
A1B1
=
6
6
,即A1B1与平面AB1C1所成的角的正弦值等于
6
6
点评:本题在特殊三棱柱中证明线面垂直,并求直线与平面所成角大小.着重考查了线面垂直判定定理、直线与平面所成角的定义与求法等知识,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网已知三棱柱ABC-A1B1C1的三视图如图所示,其中主视图AA1B1B和左视图B1BCC1均为矩形,在俯视图△A1B1C1中,A1C1=3,A1B1=5,cos∠A1=
35

(1)在三棱柱ABC-A1B1C1中,求证:BC⊥AC1
(2)在三棱柱ABC-A1B1C1中,若D是底边AB的中点,求证:AC1∥平面CDB1
(3)若三棱柱的高为5,求三视图中左视图的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图:在正三棱柱ABC-A1 B1 C1中,AB=
AA13
=a,E,F分别是BB1,CC1上的点且BE=a,CF=2a.
(Ⅰ)求证:面AEF⊥面ACF;
(Ⅱ)求三棱锥A1-AEF的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

在三棱柱ABC-A1B1C1中,已知AB=AC=AA1=
5
,BC=4,在A1在底面ABC的投影是线段BC的中点O.
(1)求点C到平面A1ABB1的距离;
(2)求二面角A-BC1-B1的余弦值;
(3)若M,N分别为直线AA1,B1C上动点,求MN的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•江西)在三棱柱ABC-A1B1C1中,已知AB=AC=AA1=
5
,BC=4,在A1在底面ABC的投影是线段BC的中点O.
(1)证明在侧棱AA1上存在一点E,使得OE⊥平面BB1C1C,并求出AE的长;
(2)求平面A1B1C与平面BB1C1C夹角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•北京)如图,在三棱柱ABC-A1B1C1中,AA1C1C是边长为4的正方形.平面ABC⊥平面AA1C1C,AB=3,BC=5.
(Ⅰ)求证:AA1⊥平面ABC;
(Ⅱ)求证二面角A1-BC1-B1的余弦值;
(Ⅲ)证明:在线段BC1上存在点D,使得AD⊥A1B,并求
BDBC1
的值.

查看答案和解析>>

同步练习册答案