精英家教网 > 高中数学 > 题目详情

【题目】已知Sn为等差数列{an}的前n项和,且a1=﹣15,S5=﹣55.
(1)求数列{an}的通项公式;
(2)若不等式Sn>t对于任意的n∈N*恒成立,求实数t的取值范围.

【答案】
(1)解:设等差数列{an}的公差为d,

则由a1=﹣15,

得﹣15×5+10d=﹣55,

解得d=2,

∴an=﹣15+(n﹣1)2=2n﹣17,

∴数列{an}的通项公式为an=2n﹣17.


(2)解:由(1)得

∴对于任意的n∈N*,Sn≥﹣64恒成立,

∴若不等式Sn>t对于任意的n∈N*恒成立,则只需t<﹣64,

因此所求实数t的取值范围为(﹣∞,﹣64)


【解析】(1)利用等差数列的通项公式及其求和公式即可得出.(2)利用等差数列的求和公式、二次函数的单调性即可得出.
【考点精析】根据题目的已知条件,利用数列的前n项和和数列的通项公式的相关知识可以得到问题的答案,需要掌握数列{an}的前n项和sn与通项an的关系;如果数列an的第n项与n之间的关系可以用一个公式表示,那么这个公式就叫这个数列的通项公式.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知F是抛物线y2=x的焦点,A,B是该抛物线上的两点,|AF|+|BF|=3,则线段AB的中点到y轴的距离为(  )
A.
B.1
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知动圆C过点(1,0),且于直线x=﹣1相切.
(1)求圆心C的轨迹M的方程;
(2)A,B是M上的动点,O是坐标原点,且 , 求证:直线AB过定点,并求出该点坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】【2017宁夏石嘴山市二模】如图,在以为顶点的多面体中,平面,平面,,.

(1)请在图中作出平面,使得,,并说明理由;

(2)求直线和平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如果执行如图所示的框图,输入N=5,则输出的数等于( )

A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】从某大学一年级女生中,选取身高分别是150cm、155cm、160cm、165cm、170cm的学生各一名,其身高和体重数据如表所示:

身高/cm(x)

150

155

160

165

170

体重/kg(y)

43

46

49

51

56


(1)求y关于x的线性回归方程;
(2)利用(1)中的回归方程,计算身高为168cm时,体重的估计值 为多少?
参考公式:线性回归方程 = x+ ,其中 = = =

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】【2017福建4月质检】如图,三棱柱中, 分别为棱的中点.

(1)在平面内过点平面于点,并写出作图步骤,但不要求证明.

(2)若侧面侧面,求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知x2+y2﹣4x﹣2y﹣k=0表示图形为圆.
(1)若已知曲线关于直线x+y﹣4=0的对称圆与直线6x+8y﹣59=0相切,求实数k的值;
(2)若k=15,求过该曲线与直线x﹣2y+5=0的交点,且面积最小的圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,BC=2,原点O是BC的中点,点A的坐标为 ( ,0),点D在平面yOz上,且∠BDC=90°,∠DCB=30°.

(1)求向量 的坐标
(2)求向量 的夹角的余弦值大小.

查看答案和解析>>

同步练习册答案