精英家教网 > 高中数学 > 题目详情
11、已知直线l∥平面α,P∈α,那么过点P且平行于l的直线(  )
分析:通过假设过点P且平行于l的直线有两条m与n的出矛盾,由题意得m∥l且n∥l,这与两条直线m与n相交与点P相矛盾,又因为点P在平面内所以点P且平行于l的直线有一条且在平面内.
解答:解:假设过点P且平行于l的直线有两条m与n
∴m∥l且n∥l
由平行公理4得m∥n
这与两条直线m与n相交与点P相矛盾
又因为点P在平面内
所以点P且平行于l的直线有一条且在平面内
所以假设错误.
故选B.
点评:反证法一般用于问题的已知比较简单或命题不易证明的命题的证明,此类题目属于难度较高的题型.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

6、已知直线l⊥平面α,直线m?平面β,下面有三个命题:①α∥β?l⊥m;②α⊥β?l∥m;③l∥m?α⊥β,其中假命题的个数为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知直线l⊥平面α,m为与直线l不重合的直线.下列判断:
①若m⊥l,则m∥α;
②若m⊥α,则m∥l;
③若m∥α,则m⊥l.
其中正确的序号是
②③
②③

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•德州一模)已知直线l⊥平面α,直线m?平面β,下列命题正确的是(  )
①l⊥m⇒a∥β
②l∥m⇒α⊥β
③α⊥β⇒l∥m
④α∥β⇒l⊥m.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知直线l⊥平面α,直线m⊆平面β,则下列四个命题:其中正确命题的序号是
 

①若α∥β,则l⊥m;   
②若α⊥β,则l∥m;
③若l∥m,则α⊥β;   
④若l⊥m,则α∥β.

查看答案和解析>>

同步练习册答案