精英家教网 > 高中数学 > 题目详情

【题目】已知函数为自然对数的底数.

1)求曲线处的切线方程;

2)关于的不等式上恒成立,求实数的值;

3)关于的方程有两个实根,求证:

【答案】(1);(2); (3)见解析.

【解析】(1)对函数求导得

∴曲线处的切线方程为,即

(2)记,其中

由题意知上恒成立,下求函数的最小值,

求导得

,得

变化时, 变化情况列表如下:

-

0

+

极小值

,则

,得

变化时, 变化情况列表如下:

1

+

0

-

极大值

当且仅当时取等号,

,从而得到

3)先证

,则

,得

变化时, 变化情况列表如下:

-

0

+

极小值

恒成立,即

记直线分别与交于

不妨设,则

从而,当且仅当时取等号,

由(2)知, ,则

从而,当且仅当时取等号,

因等号成立的条件不能同时满足,故

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知过原点的动直线与圆相交于不同的两点

1求线段的中点的轨迹的方程;

2是否存在实数使得直线与曲线只有一个交点?若存在求出的取值范围;若不存在请说明理由

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某大学为调研学生在 两家餐厅用餐的满意度,从在 两家餐厅都用过餐的学生中随机抽取了100人,每人分别对这两家餐厅进行评分,满分均为60分.

整理评分数据,将分数以10为组距分成6组: ,得到餐厅分数的频率分布直方图,和餐厅分数的频数分布表:

(Ⅰ)在抽样的100人中,求对餐厅评分低于30的人数;

(Ⅱ)从对餐厅评分在范围内的人中随机选出2人,求2人中恰有1人评分在范围内的概率;

(Ⅲ)如果从 两家餐厅中选择一家用餐,你会选择哪一家?说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数的图像经过点,曲线在点处的切线恰好与直线垂直.

(1)求实数的值;

(2)求在函数图像上任意一点处切线的斜率的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|< )的一段图象如下所示.
(1)求f(x)的解析式;
(2)求f(x)的单调减区间,并指出f(x)的最大值及取到最大值时x的集合.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C: ()的右焦点为F(2,0),且过点P(2, ). 直线过点F且交椭圆C于A、B两点.

1求椭圆C的方程

2若线段AB的垂直平分线与x轴的交点为M(),求直线的方程

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知f(x)是定义在R上的偶函数,且x≤0时,f(x)= (1﹣x).
(1)求f(0),f(1);
(2)求函数f(x)的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,抛物线的顶点是原点,以轴为对称轴,且经过点.

(Ⅰ)求抛物线的方程;

(Ⅱ)设点 在抛物线上,直线 分别与轴交于点 .求直线的斜率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】,则称点为平面上单调格点:设

求从区域中任取一点,而该点落在区域上的概率;

求从区域中的所有格点中任取一点,而该点是区域上的格点的概率.

查看答案和解析>>

同步练习册答案