精英家教网 > 高中数学 > 题目详情
5.如果函数f(x)=sin(2x+θ),函数f(x)+f'(x)为奇函数,f'(x)是f(x)的导函数,则tanθ=-2.

分析 求函数的导数,根据函数奇偶性的性质进行求解即可.

解答 解:∵f(x)=sin(2x+θ),∴f′(x)=2cos(2x+θ),
则f(x)+f'(x)=sin(2x+θ)+2cos(2x+θ),
∵f(x)+f'(x)为奇函数,
∴sin(-2x+θ)+2cos(-2x+θ)=-sin(2x+θ)-2cos(2x+θ),
即-sin(2x-θ)+2cos(2x-θ)=-sin(2x+θ)+2cos(2x+θ),
则-sin2xcosθ+cos2xsinθ+2cos2xcosθ+2sin2xsinθ
=-(sin2xcosθ+cos2xsinθ+2cos2xcosθ-sin2xsinθ)
=-sin2xcosθ-cos2xsinθ-2cos2xcosθ+2sin2xsinθ,
即2cos2xsinθ=-4cos2xcosθ,
即sinθ=-2cosθ,
即tanθ=-2,
故答案为:-2

点评 本题主要考查函数奇偶性的应用,利用函数的导数公式结合三角函数奇偶性的性质是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

15.函数f(x)=ax-1(a>0且a≠1)恒过的定点坐标为(0,0).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知奇函数$f(x)=a-\frac{1}{{{2^x}+1}}\;,\;\;x∈({-1\;,\;\;1})$.
(Ⅰ)求a的值;
(Ⅱ)若函数f(x)满足f(x-1)+f(x)<0,求x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.若复数z=1+i,则$\frac{z^2}{i}$=(  )
A.-1B.0C.1D.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知函数$f(x)=\frac{1}{3}{x^3}-e{x^2}+mx+1({m∈R})$,$g(x)=\frac{lnx}{x}$.
(Ⅰ)求函数f(x)的单调区间;
(Ⅱ)对任意的两个正实数x1,x2,若g(x1)<f'(x2)恒成立(f'(x)表示f(x)的导数),求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.计算:$|\begin{array}{l}{4}&{3}\\{2}&{1}\end{array}|$=-2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.设f(x)=lgx,若f(1-a)-f(a)>0,则实数a的取值范围为$(0,\frac{1}{2})$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.抛物线y=ax2的准线方程是y=-1,则a的值为$\frac{1}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.设函数f(x)=ex-ax2+1,曲线y=f(x)在x=1处的切线方程为y=bx+2.
(1)求a,b的值;
(2)当x>0时,求证:f(x)≥(e-2)x+2.

查看答案和解析>>

同步练习册答案