分析 求函数的导数,根据函数奇偶性的性质进行求解即可.
解答 解:∵f(x)=sin(2x+θ),∴f′(x)=2cos(2x+θ),
则f(x)+f'(x)=sin(2x+θ)+2cos(2x+θ),
∵f(x)+f'(x)为奇函数,
∴sin(-2x+θ)+2cos(-2x+θ)=-sin(2x+θ)-2cos(2x+θ),
即-sin(2x-θ)+2cos(2x-θ)=-sin(2x+θ)+2cos(2x+θ),
则-sin2xcosθ+cos2xsinθ+2cos2xcosθ+2sin2xsinθ
=-(sin2xcosθ+cos2xsinθ+2cos2xcosθ-sin2xsinθ)
=-sin2xcosθ-cos2xsinθ-2cos2xcosθ+2sin2xsinθ,
即2cos2xsinθ=-4cos2xcosθ,
即sinθ=-2cosθ,
即tanθ=-2,
故答案为:-2
点评 本题主要考查函数奇偶性的应用,利用函数的导数公式结合三角函数奇偶性的性质是解决本题的关键.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com