精英家教网 > 高中数学 > 题目详情
7.为了使函数y=sinωx(ω>0)在区间[0,1]上仅出现10次最大值,则ω的取值范围是[$\frac{37π}{2}$,$\frac{41π}{2}$).

分析 根据正弦函数的周期性和最大值的性质,建立不等式关系进行求解即可.

解答 解:若函数y=sinωx(ω>0)在区间[0,1]上仅出现10次最大值,
则满足9T+$\frac{T}{4}$≤1,且10T+$\frac{T}{4}$>1,
即T$≤\frac{4}{37}$且T>$\frac{4}{41}$,
即$\frac{4}{41}$<T≤$\frac{4}{37}$,$\frac{4}{41}$<$\frac{2π}{ω}$≤$\frac{4}{37}$,
解得$\frac{37π}{2}$≤ω<$\frac{41π}{2}$,
故答案为:[$\frac{37π}{2}$,$\frac{41π}{2}$),

点评 本题主要考查了三角函数的周期性及其求法.注意对三角函数基础知识如周期相,对称性,单调性等知识的点熟练掌握.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

17.已知函数f(x)=x3-ax2+3x,且x=3是f(x)的极值点.
(1)求实数a的值; 
(2)求f(x)在x∈[1,4]上的最小值和最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.在△ABC中,已知A=30°,c=2$\sqrt{3}$,a=2,则b=2或4.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知在等差数列{an}中,$\frac{{{a_{11}}+{a_{12}}+…+{a_{20}}}}{10}=\frac{{{a_1}+{a_2}+…{a_{30}}}}{30}$,则在等比数列{bn}中,类似的结论为$\root{10}{{b}_{11}•{b}_{12}•…•{b}_{20}}=\root{30}{{b}_{1}•{b}_{2}•{b}_{3}•…•{b}_{30}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.在空间四边形ABCD的边AB、BC、CD、DA上分别取点E、F、G、H,如果EH、FG相交于一点M,那么M一定在直线BD上.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.在△ABC中,已知M是BC中点,设$\overrightarrow{CB}$=$\overrightarrow{a}$,$\overrightarrow{CA}$=$\overrightarrow{b}$,则$\overrightarrow{AM}$=(  )
A.$\frac{1}{2}$$\overrightarrow{a}$-$\overrightarrow{b}$B.$\frac{1}{2}$$\overrightarrow{a}$+$\overrightarrow{b}$C.$\overrightarrow{a}$-$\frac{1}{2}$$\overrightarrow{b}$D.$\overrightarrow{a}$+$\frac{1}{2}$$\overrightarrow{b}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知数列{an}中,a1=3,且an=2an-1+2n-1(n≥2且n∈N*
(Ⅰ)证明:数列{$\frac{{a}_{n}-1}{{2}^{n}}$}为等差数列;
(Ⅱ)求数列{an}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.定义运算a*b=$\left\{{\begin{array}{l}{a({a≤b})}\\{b({a>b})}\end{array}}\right.$,如:1*2=1,则函数f(x)=cosx*sinx的值域为[-1,$\frac{\sqrt{2}}{2}$].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知盒中装有大小一样,形状相同的3个白球与7个黑球,每次从中任取一个球并不放回,则在第1次取到的白球条件下,第2次取到的是黑球的概率为(  )
A.$\frac{3}{10}$B.$\frac{2}{9}$C.$\frac{7}{8}$D.$\frac{7}{9}$

查看答案和解析>>

同步练习册答案