精英家教网 > 高中数学 > 题目详情
如图,在正方体ABCDA1B1C1D1中,棱长为aMN分别为A1BAC上的点,A1MAN,则MN与平面BB1C1C的位置关系是    (  ).
A.相交 B.平行C.垂直 D.不能确定
B
分别以C1B1C1D1C1C所在直线为xyz轴,建立空间直角坐标系,如图所示.

A1MANa,∴MN,∴.
C1(0,0,0),D1(0,a,0),∴=(0,a,0),
·=0,∴.
是平面BB1C1C的法向量,
MN?平面BB1C1C,∴MN∥平面BB1C1C.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,在直三棱柱ABCA1B1C1中,DE分别是ABBB1的中点,AA1ACCBAB.
 
(1)证明:BC1∥平面A1CD
(2)求二面角DA1CE的正弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知四边形ABCD是菱形,∠BAD=60°,四边形BDEF是矩形,平面BDEF⊥平面ABCDGH分别是CECF的中点.

(1)求证:平面AEF∥平面BDGH
(2)若平面BDGH与平面ABCD所成的角为60°,求直线CF与平面BDGH所成的角的正弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,边长为2的正方形中,点的中点,点的中点,将△、△分别沿折起,使两点重合于点,连接

(1)求证:
(2)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

在正方体ABCD-A1B1C1D1中,M为DD1的中点,O为底面ABCD的中心,P为棱A1B1上任意一点,则直线OP与直线AM所成的角是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在四棱锥P­ABCD中,侧面PAD⊥底面ABCD,侧棱PA=PD=,PA⊥PD,底面ABCD为直角梯形,其中BC∥AD,AB⊥AD,AB=BC=1,O为AD中点.

(1)求直线PB与平面POC所成角的余弦值;
(2)求B点到平面PCD的距离;
(3)线段PD上是否存在一点Q,使得二面角Q­AC­D的余弦值为?若存在,求出的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

空间四边形ABCD的各顶点坐标分别是,E,F分别是AB与CD的中点,则EF的长为(    )
A.B.C.D.3

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

点P(1,2,3)关于OZ轴的对称点的坐标为(     )
A.(-1, -2, 3)B.(1, 2, -3)C.(-1, -2, -3)D.(-1, 2, -3)

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在四棱锥中,底面是菱形,,平面的中点,的中点.   
(Ⅰ) 求证:∥平面
(Ⅱ)求证:平面⊥平面
(Ⅲ)求平面与平面所成的锐二面角的大小.

查看答案和解析>>

同步练习册答案