¾«Ó¢¼Ò½ÌÍøÈçͼ£¬ÒÑÖªÖ±ÏßL£ºx=my+1¹ýÍÖÔ²C£º
x2
a2
+
y2
b2
=1(a£¾b£¾0)
µÄÓÒ½¹µãF£¬ÇÒ½»ÍÖÔ²CÓÚA£¬BÁ½µã£¬µãA£¬F£¬BÔÚÖ±ÏßG£ºx=a2ÉϵÄÉäÓ°ÒÀ´ÎΪµãD£¬K£¬E£¬
£¨1£©ÒÑÖªÅ×ÎïÏßx2=4
3
y
µÄ½¹µãΪÍÖÔ²CµÄÉ϶¥µã£®
¢ÙÇóÍÖÔ²CµÄ·½³Ì£»
¢ÚÈôÖ±ÏßL½»yÖáÓÚµãM£¬ÇÒ
MA
=¦Ë1
AF
£¬
MB
=¦Ë2
BF
£¬µ±m±ä»¯Ê±£¬Çó¦Ë1+¦Ë2µÄÖµ£»
£¨2£©Á¬½ÓAE£¬BD£¬ÊÔ̽Ë÷µ±m±ä»¯Ê±£¬Ö±ÏßAE¡¢BDÊÇ·ñÏཻÓÚÒ»¶¨µãN£¿Èô½»ÓÚ¶¨µãN£¬ÇëÇó³öNµãµÄ×ø±ê²¢¸øÓèÖ¤Ã÷£»·ñÔò˵Ã÷ÀíÓÉ£®
·ÖÎö£º£¨1£©ÓÉÌâÉèÌõ¼þÖªc=1£¬a2=b2+c2=4£¬ÍÖÔ²CµÄ·½³ÌΪ
x2
4
+
y2
3
=1
£¬ÔÙÓÉlÓëyÖá½»ÓÚM(0£¬-
1
m
)
£¬ÉèA£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¬ÓÉ
x=my+1
3x2+4y2-12=0
£¬Öª£¨3m2+4£©y2+6my-9=0£¬¡÷=144£¨m2+1£©£¾0£¬È»ºóÓɸùÓëϵÊýµÄ¹ØϵÄÜÇó³ö¦Ë1+¦Ë2µÄÖµ£»
£¨2£©ÓÉF£¨1£¬0£©£¬k=£¨a2£¬0£©£¬ÏÈ̽Ë÷m=0ʱ£¬Ö±ÏßL¡ÍoxÖᣬÔòABEDÓɶԳÆÐÔÖª£¬AEÓëBDÏཻFKÖеãN£¬ÇÒN(
a2+1
2
£¬0)
£¬ÔÙ²ÂÏ룺µ±m±ä»¯Ê±£¬AEÓëBDÏཻÓÚ¶¨µãN(
a2+1
2
£¬0)
£®È»ºó½áºÏÌâÉèÌõ²ÂÏë½øÐÐÖ¤Ã÷£®
½â´ð£º½â£º£¨1£©Ò×Öªb=
3
£¬¡àb2=3£¬ÓÖF£¨1£¬0£©£¬¡àc=1£¬a2=b2+c2=4
¡àÍÖÔ²CµÄ·½³ÌΪ
x2
4
+
y2
3
=1
£¨3·Ö£©
¡ßlÓëyÖá½»ÓÚM(0£¬-
1
m
)

ÉèA£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¬ÓÉ
x=my+1
3x2+4y2-12=0

¡à£¨3m2+4£©y2+6my-9=0£¬¡÷=144£¨m2+1£©£¾0¡à
1
y1
+
1
y2
=
2m
3
(*)
£¨5·Ö£©
ÓÖÓÉ
MA
=¦Ë1
AF
£¬¡à(x1£¬y1+
1
m
)=¦Ë1(1-x1£¬-y1)

¡à¦Ë1=-1-
1
my1
ͬÀí¦Ë2=-1-
1
my2

¡à¦Ë1+¦Ë2=-2-
1
m
(
1
y1
+
1
y2
)=-2-
2
3
=-
8
3
£¨8·Ö£©

£¨3£©¡ßF£¨1£¬0£©£¬k=£¨a2£¬0£©£¬
ÏÈ̽Ë÷£¬µ±m=0ʱ£¬Ö±ÏßL¡ÍoxÖᣬÔòABEDÓɶԳÆÐÔÖª£¬AEÓëBDÏཻFKÖеãN£¬ÇÒN(
a2+1
2
£¬0)

²ÂÏ룺µ±m±ä»¯Ê±£¬AEÓëBDÏཻÓÚ¶¨µãN(
a2+1
2
£¬0)
£¨9·Ö£©
Ö¤Ã÷£ºÉèA£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¬E£¨a2£¬y2£©£¬D£¨a2£¬y1£©
µ±m±ä»¯Ê±Ê×ÏÈAE¹ý¶¨µãN
¡ß
x=my+1
b2x2+a2y2-a2b2=0
£¬¼´£¨a2+b2m2£©y2+2mb2y+b2£¨1-a2£©=0
ÓÖ¡÷=4a2b2£¨a2+m2b2-1£©£¾0£¨a£¾1£©
ÓÖKAN=
-y1
a2-1
2
-my1
£¬KEN=
-y2
1-a2
2

¶øKAN-KEN=
a2-1
2
(y1+y2)-my1y2
1-a2
2
(
a2-1
2
-my1)

(
a2-1
2
(y1+y2)-my1y2=
a2-1
2
•(-
2mb2
a2+m2b2
)-m•
b2(1-a2)
a2+m2b2
=
(a2-1)•(mb2-mb2)
a2+m2b2
=0)

¡àKAN=KEN£¬¡àA¡¢N¡¢EÈýµã¹²Ïߣ¬
ͬÀí¿ÉµÃB¡¢N¡¢DÈýµã¹²Ïß
¡àAEÓëBDÏཻÓÚ¶¨µãN(
a2+1
2
£¬0)
£¨13·Ö£©
µãÆÀ£º±¾Ì⿼²éԲ׶ÇúÏߺÍÖ±ÏßµÄλÖùØϵºÍ×ÛºÏÔËÓ㬽âÌâʱҪÈÏÕæÉóÌ⣬×Ðϸ½â´ð£¬×¢ÒâºÏÀíµØ½øÐвÂÏ룮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

¾«Ó¢¼Ò½ÌÍøÈçͼ£¬ÒÑÖªÖ±Ïßl£ºx=my+1¹ýÍÖÔ²C£º
x2
a2
+
y2
b2
=1
µÄÓÒ½¹µãF£¬Å×ÎïÏߣºx2=4
3
y
µÄ½¹µãΪÍÖÔ²CµÄÉ϶¥µã£¬ÇÒÖ±Ïßl½»ÍÖÔ²CÓÚA¡¢BÁ½µã£¬µãA¡¢F¡¢BÔÚÖ±Ïßg£ºx=4ÉϵÄÉäÓ°ÒÀ´ÎΪµãD¡¢K¡¢E£®
£¨¢ñ£©ÇóÍÖÔ²CµÄ·½³Ì£»
£¨¢ò£©ÈôÖ±Ïßl½»yÖáÓÚµãM£¬ÇÒ
MA
=¦Ë1
AF
£¬
MB
=¦Ë2
BF
£¬µ±m±ä»¯Ê±£¬Ì½Çó¦Ë1+¦Ë2µÄÖµÊÇ·ñΪ¶¨Öµ£¿ÈôÊÇ£¬Çó³ö¦Ë1+¦Ë2µÄÖµ£¬·ñÔò£¬ËµÃ÷ÀíÓÉ£»
£¨¢ó£©Á¬½ÓAE¡¢BD£¬ÊÔÖ¤Ã÷µ±m±ä»¯Ê±£¬Ö±ÏßAEÓëBDÏཻÓÚ¶¨µãN(
5
2
£¬0)
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

Èçͼ£¬ÒÑÖªÖ±Ïßl£ºx=my+4£¨m¡ÊR£©ÓëxÖá½»ÓÚµãP£¬½»Å×ÎïÏßy2=2ax£¨a£¾0£©ÓÚA£¬BÁ½µã£¬×ø±êÔ­µãOÊÇPQµÄÖе㣬¼ÇÖ±ÏßAQ£¬BQµÄбÂÊ·Ö±ðΪk1£¬k2£®
£¨¢ñ£©ÈôPΪÅ×ÎïÏߵĽ¹µã£¬ÇóaµÄÖµ£¬²¢È·¶¨Å×ÎïÏßµÄ×¼ÏßÓëÒÔABΪֱ¾¶µÄÔ²µÄλÖùØϵ£®
£¨¢ò£©ÊÔÖ¤Ã÷£ºk1+k2Ϊ¶¨Öµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

Èçͼ£¬ÒÑÖªÖ±ÏßL£ºx=my+1¹ýÍÖÔ²C£º
x2
a2
+
y2
b2
=1£¨a£¾b£¾0£©µÄÓÒ½¹µãF£¬ÇÒ½»ÍÖÔ²CÓÚA£¬BÁ½µã£¬µãA£¬F£¬BÔÚÖ±ÏßG£ºx=a2ÉϵÄÉäÓ°ÒÀ´ÎΪµãD£¬K£¬E£®
£¨1£©ÈôÅ×ÎïÏßx2=4
3
yµÄ½¹µãΪÍÖÔ²CµÄÉ϶¥µã£¬ÇóÍÖÔ²CµÄ·½³Ì£»
£¨2£©Á¬½ÓAE£¬BD£¬Ö¤Ã÷£ºµ±m±ä»¯Ê±£¬Ö±ÏßAE¡¢BDÏཻÓÚÒ»¶¨µã£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨2012•ÀÖɽ¶þÄ££©Èçͼ£¬ÒÑÖªÖ±ÏßL£ºx=my+1¹ýÍÖÔ²C£º
x2
a2
+
y2
b2
=1£¨a£¾b£¾0£©µÄÓÒ½¹µãF£¬ÇÒ½»ÍÖÔ²CÓÚA¡¢BÁ½µã£¬µãA¡¢F¡¢BÔÚÖ±ÏßG£»x=a2ÉϵÄÉäÓ°ÒÀ´ÎΪµãD¡¢K¡¢E£¬ÈôÅ×ÎïÏßx2=4
3
yµÄ½¹µãΪÍÖÔ²CµÄ¶¥µã£®
£¨1£©ÇóÍÖÔ²CµÄ·½³Ì£»
£¨2£©ÈôÖ±ÏßL½»yÖáÓÚµãM£¬
MA
=¦Ë1
AF
£¬
MB
=¦Ë2
BF
£¬µ±M±ä»¯Ê±£¬Çó¦Ë1+¦Ë2µÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

Èçͼ£¬ÒÑÖªÖ±ÏßL£ºx=my+1¹ýÍÖÔ²C£º
x2
a2
+
y2
b2
=1(a£¾b£¾0)
µÄÓÒ½¹µãF£¬ÇÒ½»ÍÖÔ²CÓÚA¡¢BÁ½µã£¬µãA¡¢BÔÚÖ±ÏßG£ºx=a2ÉϵÄÉäÓ°ÒÀ´ÎΪµãD¡¢E£®
£¨1£©ÈôÅ×ÎïÏßx2=4
3
y
µÄ½¹µãΪÍÖÔ²C µÄÉ϶¥µã£¬ÇóÍÖÔ²CµÄ·½³Ì£»£¨2£©£¨Àí¿ÆÉú×ö£©Á¬½ÓAE¡¢BD£¬ÊÔ̽Ë÷µ±m±ä»¯Ê±£¬Ö±ÏßAE¡¢BDÊÇ·ñÏཻÓÚÒ»¶¨µãN£¿Èô½»ÓÚ¶¨µãN£¬ÇëÇó³öNµãµÄ×ø±ê£¬²¢¸øÓèÖ¤Ã÷£»
·ñÔò˵Ã÷ÀíÓÉ£®
£¨ÎÄ¿ÆÉú×ö£©ÈôN(
a2+1
2
£¬0)
ΪxÖáÉÏÒ»µã£¬ÇóÖ¤£º
AN
=¦Ë
NE
£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸