精英家教网 > 高中数学 > 题目详情

在直角坐标系中,已知一个圆心在坐标原点,半径为2的圆,从这个圆上任意一点Py轴作垂线段PP′,P′为垂足.

   (1)求线段PP′中点M的轨迹C的方程;

   (2)过点Q(-2,0)作直线l与曲线C交于AB两点,设N是过点,且以为方向向量的直线上一动点,满足O为坐标原点),问是否存在这样的直线l,使得四边形OANB为矩形?若存在,求出直线l的方程;若不存在,说明理由.

(1)轨迹C的方程为

(2)存在直线l使四边形OANB为矩形,直线l的方程为


解析:

(1)设M(xy)是所求曲线上的任意一点,Px1y1)是方程x2 +y2 =4的圆上的任意一点,则

    则有:得,

    轨迹C的方程为 

   (1)当直线l的斜率不存在时,与椭圆无交点.

    所以设直线l的方程为y = k(x+2),与椭圆交于A(x1y1)、B(x2y2)两点,N点所在直线方程为

    由

    由△=

    即 …   

    ,∴四边形OANB为平行四边形

    假设存在矩形OANB,则,即

    即

    于是有    得 … 设

即点N在直线上.

 ∴存在直线l使四边形OANB为矩形,直线l的方程为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,在直角坐标系中,已知△ABC的三个顶点的坐标,求:
(1)直线AB的一般式方程;
(2)AC边上的高所在直线的斜截式方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

在直角坐标系中,已知射线OA:x-y=0(x≥0),OB:x+
3
y=0(x≥0),过点P(1,0)作直线分别交射线OA,OB于A,B点.
(1)当AB中点为P时,求直线AB的方程;
(2)在(1)的条件下,若A、B两点到直线l:y=mx+2的距离相等,求实数m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

在直角坐标系中,已知A(cosx,sinx),B=(1,1),O为坐标原点,
OA
+
OB
=
OC
,f(x)=|
OC
|
2

(Ⅰ)求f(x)的对称中心的坐标及其在区间[-π,0]上的单调递减区间;
(Ⅱ)若f(x0)=3+
2
,x0∈[
π
2
4
]
,求tanx0的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2007•普陀区一模)在直角坐标系中,已知点列P1(1,-
1
2
),P2(2,
1
22
),P3(3,-
1
23
),…,Pn(n,(-
1
2
)n
),…,其中n是正整数.连接P1 P2的直线与x轴交于点X1(x1,0),连接P2 P3的直线与x轴交于点X2(x2,0),…,连接Pn Pn+1的直线与x轴交于点Xn(xn,0),….
(1)求数列{an}的通项公式;
(2)依次记△X1P2X2的面积为S1,△X2P3X3的面积为S3,…,△XnPn+1Xn的面积为Sn,…试求无穷数列{Sn}的各项和.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,在直角坐标系中,已知射线OA:x-y=0(x≥0),OB:
3
x+3y=0(x≥0),过点P(a,0)(a>0)作直线l分别交射线OA,OB于A,B两点,且
AP
=2
PB
,则直线l的斜率为
 

查看答案和解析>>

同步练习册答案