精英家教网 > 高中数学 > 题目详情
(2011•安徽模拟)已知函数f(x)=2acos2x+bsinxcosx-
3
2
,且f(0)=
3
2
,f(
π
4
)=
1
2

(1)求f(x)的最小正周期;
(2)求f(x)的单调递增区间.
分析:(1)利用f(0)=
3
2
,f(
π
4
)=
1
2
求得:a=
3
2
,b=1,然后利用三角形的二倍角公式及和角的正弦公式化简函数f(x),最后利用三角函数的周期公式求出f(x)的最小正周期;
(2)令f(x)中的整体角满足:2kπ-
π
2
≤2x+
π
3
≤2kπ+
π
2
(k∈Z)
,求出x的范围,写成区间即为f(x)的单调递增区间.
解答:解:(1)由 f (0)=
3
2
得a=
3
2

由 f ( 
π
4
)=
1
2
 得b=1
∴f (x)=
3
cos2x+sin x cos x-
3
2

=
3
2
cos 2x+
1
2
sin 2x=sin(2x+
π
3

故最小正周期T=π
(2)由2kπ-
π
2
≤2x+
π
3
≤2kπ+
π
2
(k∈Z)

得 kπ-
12
≤x≤kπ+
π
12
(k∈Z)

故f(x)的单调递增区间为[kπ-
12
,kπ+
π
12
](k∈Z)
点评:解决三角函数的有关性质问题,一般先将三角函数化为只含一个角一个函数的形式,然后利用整体角处理的方法来解决,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2011•安徽模拟)已知函数f(x)=-x3+ax2+bx+c在(-∞,0)上是减函数,在(0,1)上是增函数,函数f(x)在R上有三个零点,且1是其中一个零点.
(1)求b的值;
(2)求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•安徽模拟)设函数f(x)=sin(x+
π
6
)+2sin2
x
2
,x∈[0,π]

(Ⅰ)求f(x)的值域;
(Ⅱ)记△ABC的内角A、B、C的对边长分别为a,b,c,若f(B)=1,b=1,c=
3
,求a
的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•安徽模拟)已知f(x)是奇函数,当x≥0时,f(x)=ex-1(其中e为自然对数的底数),则f(ln
1
2
)=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•安徽模拟)双曲线
x2
a2
-
y2
b2
=1(a>0,b>0)中,F为右焦点,A为左顶点,点B(0,b)且AB⊥BF,则此双曲线的离心率为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•安徽模拟)已知函数f(x)=sinx-
x2
的导数为f'(x),且f'(x)的最大值为b,若g(x)=2lnx-2bx2-kx在[1,+∞)上单调递减,则实数k的取值范围是
[0,+∞)
[0,+∞)

查看答案和解析>>

同步练习册答案