精英家教网 > 高中数学 > 题目详情
9.函数f(x)=cos2x-cos4x的最大值和最小正周期分别为(  )
A.$\frac{1}{4}$,πB.$\frac{1}{4}$,$\frac{π}{2}$C.$\frac{1}{2}$,πD.$\frac{1}{2}$,$\frac{π}{2}$

分析 先由条件利用三角函数的恒等变换化简函数的解析式,再利用三角函数的周期性、最值得出结论.

解答 解:y=cos2x-cos4x=cos2x(1-cos2x)=cos2x•sin2x=$\frac{1}{4}$sin22x=$\frac{1-cos4x}{8}$,
故它的周期为$\frac{2π}{4}$=$\frac{π}{2}$,最大值为$\frac{2}{8}$=$\frac{1}{4}$.
故选:B.

点评 本题主要考查三角函数的恒等变换,三角函数的周期性、最值,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

19.一个几何体的三视图如图所示,则这个几何体的表面积为(  )
A.22+$\frac{2}{3}$πB.22+$\frac{5}{3}$πC.22+$\frac{8}{3}$πD.22-π

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.用平面区域表示不等式组$\left\{\begin{array}{l}{2x-y+1≥0}\\{2x+y-1≥0}\\{x≤1}\end{array}\right.$的解集.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.设x+y=4,且y>0,则$\frac{1}{4|x|}$+$\frac{|x|}{y}$的最小值为$\frac{28}{57}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.若函数y=3x+(b-1)的图象不经过第二象限,则b的取值范围是(-∞,0].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.命题p:?x∈R,ax2+ax-1≥0,q:$\frac{3}{1-a}$>1,r:(a-m)(a-m-1)>0.
(1)若¬p∧q为假命题,求实数a的取值范围;
(2)若¬q是¬r的必要不充分条件,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.己知数列{cn}的前n项和为Tn,若数列{cn}满足各项均为正项,并且以(cn,Tn)(n∈N*)为坐标的点都在曲线ay=$\frac{a}{2}$x2+$\frac{a}{2}$x+b,(a为非0常数)上运动,则称数列{cn}为“抛物数列”,己知数列{bn}为“抛物数列”,则(  )
A.{bn}一定为等比数列B.{bn}一定为等差数列
C.从第二项起{bn}一定为等比数列D.从第二项起{bn}一定为等差数列

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知三个集合A、B、C,则“A⊆B,B⊆C,C⊆A”是“A=B=C”的(  )
A.充要条件B.充分不必要条件
C.必要不充分条件D.既非充分又非必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知实数x,y满足$\left\{\begin{array}{l}x≤3\\ y≤4\\ 4x+3y-12≥0\end{array}\right.$则z=x2+y2的取值范围是(  )
A.[3,5]B.[9,25]C.$[\frac{12}{5},5]$D.$[\frac{144}{25},25]$

查看答案和解析>>

同步练习册答案