ÉèF1¡¢F2·Ö±ðΪÍÖÔ²C£º
x2
a2
+
y2
b2
=1£¨a£¾b£¾0£©µÄ×ó¡¢ÓÒÁ½¸ö½¹µã£®
£¨1£©ÈôÍÖÔ²CÉϵĵãA£¨1£¬
3
2
£©µ½F1¡¢F2Á½µãµÄ¾àÀëÖ®ºÍµÈÓÚ4£¬Ð´³öÍÖÔ²CµÄ·½³ÌºÍ½¹µã×ø±ê£»
£¨2£©ÉèµãKÊÇ£¨1£©ÖÐËùµÃÍÖÔ²ÉϵĶ¯µã£¬ÇóÏ߶ÎF1KµÄÖеãµÄ¹ì¼£·½³Ì£»
£¨3£©ÒÑÖªÍÖÔ²¾ßÓÐÐÔÖÊ£ºÈôM¡¢NÊÇÍÖÔ²CÉϹØÓÚÔ­µã¶Ô³ÆµÄÁ½¸öµã£¬µãPÊÇÍÖÔ²ÉÏÈÎÒâÒ»µã£¬µ±Ö±ÏßPM¡¢PNµÄбÂʶ¼´æÔÚ£¬²¢¼ÇΪkPM¡¢kPNʱ£¬ÄÇôkPMÓëkPNÖ®»ýÊÇÓëµãPλÖÃÎ޹صĶ¨Öµ£®ÊÔ¶ÔË«ÇúÏß
x2
a2
-
y2
b2
=1
д³ö¾ßÓÐÀàËÆÌØÐÔµÄÐÔÖÊ£¬²¢¼ÓÒÔÖ¤Ã÷£®
·ÖÎö£º£¨1£©ÍÖÔ²CµÄ½¹µãÔÚxÖáÉÏ£¬ÓÉÍÖÔ²ÉϵĵãAµ½F1¡¢F2Á½µãµÄ¾àÀëÖ®ºÍÊÇ4£¬¸ù¾ÝÍÖÔ²µÄ¶¨Òå¿ÉµÃ2a=4£¬¼´a=2£®ÀûÓõãA£¨1£¬
3
2
£©ÔÚÍÖÔ²ÉÏ£¬¿ÉÇóµÃb2=3£¬´Ó¶ø¿ÉÇóÍÖÔ²CµÄ·½³Ì£»
£¨2£©ÏÈÀûÓÃÖеã×ø±ê¹«Ê½ÇóµÃ¶¯µãÓëF1KÖ®¼ä×ø±ê¹Øϵ£¬ÀûÓö¯µãÔÚÍÖÔ²ÉÏ£¬¿ÉÇóÖеãµÄ¹ì¼£·½³Ì£®
£¨3£©ÉèµãMµÄ×ø±êΪ£¨m£¬n£©£¬ÔòµãNµÄ×ø±êΪ£¨-m£¬-n£©£¬½ø¶ø¿ÉÖª
m2
a2
-
n2
b2
=1¡¢ÓÖÉèµãPµÄ×ø±êΪ£¨x£¬y£©£¬±íʾ³öÖ±ÏßPMºÍPNµÄбÂÊ£¬ÇóµÄÁ½Ö±ÏßбÂʳ˻ýµÄ±í´ïʽ£¬°ÑyºÍxµÄ±í´ïʽ´úÈë·¢ÏÖ½á¹ûÓëpÎ޹أ®
½â´ð£º½â£º£¨1£©ÍÖÔ²CµÄ½¹µãÔÚxÖáÉÏ£¬ÓÉÍÖÔ²ÉϵĵãAµ½F1¡¢F2Á½µãµÄ¾àÀëÖ®ºÍÊÇ4£¬µÃ2a=4£¬¼´a=2£®
ÓÖµãA£¨1£¬
3
2
£©ÔÚÍÖÔ²ÉÏ£¬Òò´Ëb2=3£¬ÓÚÊÇc2=1£®
ËùÒÔÍÖÔ²CµÄ·½³ÌΪ
x2
4
+
y2
3
=1
£¬½¹µãF1£¨-1£¬0£©£¬F2£¨1£¬0£©£®
£¨2£©ÉèÍÖÔ²CÉϵĶ¯µãΪK£¨x1£¬y1£©£¬Ï߶ÎF1KµÄÖеãQ£¨x£¬y£©£¬¡àx1=2x+1£¬y1=2y£®
Òò´Ë
(2x+1)2
4
+
(2y)2
3
=1
£®¼´(x+
1
2
)
2
+
4y2
3
=1
ΪËùÇóµÄ¹ì¼£·½³Ì£®
£¨3£©ÀàËƵÄÐÔÖÊΪÈôMNÊÇË«ÇúÏß
x2
a2
-
y2
b2
=1ÉϹØÓÚÔ­µã¶Ô³ÆµÄÁ½¸öµã£¬
µãPÊÇË«ÇúÏßÉÏÈÎÒâÒ»µã£¬µ±Ö±ÏßPM¡¢PNµÄбÂʶ¼´æÔÚ£¬
²¢¼ÇΪkPM¡¢kPNʱ£¬ÄÇôkPMÓëkPNÖ®»ýÊÇÓëµãPλÖÃÎ޹صĶ¨Öµ£®
ÉèµãMµÄ×ø±êΪ£¨m£¬n£©£¬ÔòµãNµÄ×ø±êΪ£¨-m£¬-n£©£¬
ÆäÖÐ
m2
a2
-
n2
b2
=1¡¢ÓÖÉèµãPµÄ×ø±êΪ£¨x£¬y£©£¬
ÓÉkPM=
y-n
x-m
£¬kPN=
y+n
x+m
£¬
µÃkPM•kPN=
y-n
x-m
y+n
x+m
=
y2-n2
x2-m2
£¬
½«y2=
b2
a2
x2-b2£¬n2=
b2
a2
m2-b2£¬´úÈëµÃkPM•kPN=
b2
a2
£®
µãÆÀ£º±¾ÌâÒÔÍÖԲΪÔØÌ壬¿¼²éÍÖÔ²µÄ±ê×¼·½³Ì£¬¿¼²é´úÈë·¨Çó¹ì¼£·½³Ì£¬¿¼²éÁËԲ׶ÇúÏߵĹ²Í¬ÌØÕ÷£®¿¼²éÁËѧÉú×ۺϷÖÎöÎÊÌâºÍ½â¾öÎÊÌâµÄÄÜÁ¦£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÉèF1£¬F2·Ö±ðΪÍÖC£º
x2
a2
+
y2
b2
=1
£¨a£¾b£¾0£©µÄ×ó¡¢ÓÒÁ½¸ö½¹µã£¬ÍÖÔ²CÉϵĵãA(1£¬
3
2
)
µ½Á½µãµÄ¾àÀëÖ®ºÍµÈÓÚ4£®
£¨¢ñ£©ÇóÍÖÔ²CµÄ·½³ÌºÍ½¹µã×ø±ê£»
£¨¢ò£©ÉèµãPÊÇ£¨¢ñ£©ÖÐËùµÃÍÖÔ²ÉϵĶ¯µãQ(0.
1
2
)
Çó|PQ|µÄ×î´óÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

ÉèF1£¬F2·Ö±ðΪÍÖC£ºÊýѧ¹«Ê½£¨a£¾b£¾0£©µÄ×ó¡¢ÓÒÁ½¸ö½¹µã£¬ÍÖÔ²CÉϵĵãÊýѧ¹«Ê½µ½Á½µãµÄ¾àÀëÖ®ºÍµÈÓÚ4£®
£¨¢ñ£©ÇóÍÖÔ²CµÄ·½³ÌºÍ½¹µã×ø±ê£»
£¨¢ò£©ÉèµãPÊÇ£¨¢ñ£©ÖÐËùµÃÍÖÔ²ÉϵĶ¯µãÊýѧ¹«Ê½Çó|PQ|µÄ×î´óÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸