精英家教网 > 高中数学 > 题目详情
△ABC中,已知:sinA:sinB:sinC=1:1:
2
,且S△ABC=
1
2
,则
AB
BC
+
BC
CA
+
CA
AB
的值是(  )
A.2B.
2
C.-2D.-
2
因为sinA:sinB:sinC=1:1:
2

由正弦定理可得,a:b:c=1:1:
2

所以ABC以∠C为直角的直角三角形
S△ABC=
1
2
可得三角形的三边为1,1,
2
,∠A=∠B=45°,∠C=90°
AB
BC
+
BC
CA
+
CA
AB
=
2
×1×cos135°+0+1×
2
×cos135°
=-2
故选:C
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

225、如图,在空间四面体S-ABC中,已知∠ABC=90°,SA⊥平面ABC,AN⊥SB,AM⊥SC,证明:SC⊥平面AMN.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,已知面积S△ABC=6
3
,a=3,b=8
,求角C及边c 的值.

查看答案和解析>>

科目:高中数学 来源:山东省淄博市2010届高三上学期期末考试理科数学试卷 题型:022

在△ABC中,已知,S△ABC,则的值为________

查看答案和解析>>

科目:高中数学 来源:高中数学全解题库(国标苏教版·必修4、必修5) 苏教版 题型:044

在△ABC中,已知面积S,a=2,b=2,求sinA

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在△ABC中,已知面积S△ABC=6
3
,a=3,b=8
,求角C及边c 的值.

查看答案和解析>>

同步练习册答案