精英家教网 > 高中数学 > 题目详情
R(2,-3)关于原点O对称的点为R'(x'y')

 

答案:
解析:

解:

 

 


练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知角a的顶点在原点,始边与x轴的正半轴重合,终边经过点P(-3,
3
).
(1)定义行列式
.
ab
cd
.
=a•d-b•c,解关于x的方程:
.
cosxsinx
sinacosa
.
+1=0;
(2)若函数f(x)=sin(x+a)+cos(x+a)(x∈R)的图象关于直线x=x0对称,求tanx0的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

△OAB中,|
AB
|=10

(1)点C为直线AB上一点,且
AC
=t
AB
,(t∈R)
,试用
OA
OB
表示
OC

(2)点C1、C2,…,C9依次为线段AB的10等分点,且
OC1
+
OC2
+…+
OC9
=λ(
OA
+
OB
)
,求实数λ的值.
(3)条件同(2),又点P为线段AB上一个动点,定义关于点P的函数f(P)=|
OP
-
OC1
|+2|
OP
-
OC2
|+3|
OP
-
OC3
|+…+9|
OP
-
OC9
|+10|
OP
-
OB
|
,求f(P)的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
a•2x+a2-22x-1
(x∈R,x≠0),其中a为常数,且a<0.
(1)若f(x)是奇函数,求常数a的值;
(2)当f(x)为奇函数时,设f(x)的反函数为f-1(x),且函数y=g(x)的图象与y=f-1(x+1)的图象关于y=x对称,求y=g(x)的解析式并求其值域;
(3)对于(2)中的函数y=g(x),不等式g2(x)+2g(x)+t•g(x)>-2恒成立,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•乐山二模)设函数f(x)=ax3-2bx2+cx+4d(a,b,c,d∈R)的图象关于原点对称,且x=1时,f(x)取得极小值-
23

(1)求函数f(x)的解析式;
(2)当x∈[-1,1]时,函数f(x)的图象上是否存在两点,使得过此两点处的切线相互垂直?试说明你的结论;
(3)设f(x)表示的曲线为G,过点(1,-10)作曲线G的切线l,求l的方程.

查看答案和解析>>

同步练习册答案