精英家教网 > 高中数学 > 题目详情
4.已知曲线C上的动点P(x,y)到点F(0,1)的距离比到直线l:y=-2的距离小1.动点E在直线l上,过点E分别做曲线C的切线EA,EB,切点为A,B.
(1)求曲线C的方程;
(2)求|AB|的最小值;
(3)在直线l上是否存在一点M,使得△ABM为以AB为斜边的等腰直角三角形?若存在,求出点M坐标;若不存在,请说明理由.

分析 (1)利用抛物线的定义,可得曲线C的方程x2=4y.
(2)设E(a,-2),A,B的坐标,由题设知x12-2ax1-8=0.同理可得:x22-2ax2-8=0所以x1+x2=2a,x1•x2=-8,可得AB中点,由此可知直线AB方程,即可求|AB|的最小值;
(3)由(2)知AB中点,直线AB的方程为,分类讨论,利用条件,即可得出结论.

解答 解:(1)∵曲线C上的动点P(x,y)到点F(0,1)的距离比到直线l:y=-2的距离小1,
∴P的轨迹是以(0,1)为焦点的抛物线,曲线C的方程x2=4y;
(2)设E(a,-2),A(x1,$\frac{{{x}_{1}}^{2}}{4}$),B(x2,$\frac{{{x}_{2}}^{2}}{4}$),
∵$y=\frac{{x}^{2}}{4}$,∴y′=$\frac{1}{2}x$,过点A的抛物线切线方程为y-$\frac{{{x}_{1}}^{2}}{4}$=$\frac{1}{2}x$1(x-x1),
∵切线过E点,∴整理得:x12-2ax1-8=0
同理可得:x22-2ax2-8=0,∴x1,x2是方程x2-2ax-8=0的两根,∴x1+x2=2a,x1•x2=-8,
可得AB中点为(a,$\frac{{a}^{2}+4}{2}$)
又${k}_{AB}=\frac{{x}_{1}+{x}_{2}}{4}$=$\frac{a}{2}$,
∴直线AB的方程为y-$\frac{{a}^{2}+4}{2}$=$\frac{a}{2}$(x-a)即y=$\frac{a}{2}$x+2,
∴|AB|=$\sqrt{1+\frac{{a}^{2}}{4}}•\sqrt{4{a}^{2}+32}$,
∴a=0时,|AB|的最小值为4$\sqrt{2}$;
(3)由(2)知AB中点N(a,$\frac{{a}^{2}+4}{2}$),直线AB的方程为y=$\frac{a}{2}$x+2.
当a≠0时,则AB的中垂线方程为y-$\frac{{a}^{2}+4}{2}$=-$\frac{2}{a}$(x-a),
∴AB的中垂线与直线y=-2的交点M($\frac{{a}^{3}+12a}{4}$,-2),
∴|MN|2=$\frac{1}{16}({a}^{2}+8)^{2}({a}^{2}+4)$
∵|AB|=$\sqrt{1+\frac{{a}^{2}}{4}}•\sqrt{4{a}^{2}+32}$,
若△ABM为等腰直角三角形,则|MN|=$\frac{1}{2}$|AB|,
∴$\frac{1}{16}({a}^{2}+8)^{2}({a}^{2}+4)$=$\frac{1}{4}$($\sqrt{1+\frac{{a}^{2}}{4}}•\sqrt{4{a}^{2}+32}$)2
解得a2=-4,∴不存在
当a=0时,经检验不存在满足条件的点M
综上可得,不存在一点M,使得△ABM为以AB为斜边的等腰直角三角形.

点评 本题考查直线和圆锥曲线的综合问题,解题时要注意公式的灵活运用,注意计算能力的培养.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

14.如图,在四棱锥P-ABCD中,PA⊥底面ABCD,AB⊥AD,∠ABC=60°,PA=AB=BC,AD=$\frac{2\sqrt{3}}{3}$AB,E是PC的中点.
证明:PD⊥平面ABE.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.己知命题p:方程$\frac{x^2}{m-2}+\frac{y^2}{6-m}=1$表示焦点在y轴的椭圆;命题q:关于x的不等式x2-2x+m>0的解集是R;
若“p∧q”是假命题,“p∨q”是真命题,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.若过(2,0)且与直线2x-y-1=0垂直的直线方程是(  )
A.2x-y+1=0B.2x-y-4=0C.x+2y-2=0D.x+2y-4=0

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左右焦点为F1,F2,离心率为$\frac{\sqrt{3}}{3}$,过F2的直线l交C于A,B两点,若△AF1B的周长为4$\sqrt{3}$,则C的方程为$\frac{{x}^{2}}{3}+\frac{{y}^{2}}{2}=1$,此时椭圆C的一条弦被(1,1)平分,那么这条弦所在的直线方程为2x+3y-5=0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知抛物线C:x2=4y的焦点为F,直线l:y=kx+a(a>0)与抛物线C交于A,B两点.
(Ⅰ)设抛物线C在A和B点的切线交于点P,试求点P的坐标;
(Ⅱ)若直线l过焦点F,且与圆x2+(y-1)2=1相交于D,E(其中A,D在y轴同侧),求证:|AD|•|BE|是定值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知A(1,-2,11),B(4,2,3),C(6,-1,4).则△ABC的面积是(  )
A.$\frac{{5\sqrt{42}}}{2}$B.$5\sqrt{42}$C.$5\sqrt{3}$D.$5\sqrt{14}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.四面体ABCD沿棱DA,DB,DC剪开,将面ADB,面ADC和面BDC展开落在平面ABC上,恰好构成一个边长为1的正方形AEGF(如图所示),则原四面体的体积为$\frac{1}{24}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知命题p:方程$\frac{x^2}{k-2}-\frac{y^2}{5-k}=1$表示焦点在x轴上的双曲线,命题q:?x∈(0,+∞),x2+1≥kx恒成立,若“p∨q”是真命题,“¬(p∧q)”也是真命题,求k的取值范围.

查看答案和解析>>

同步练习册答案