精英家教网 > 高中数学 > 题目详情
若等比数列{an}满足a2+a4=20,a3+a5=40,求an和Sn
分析:由已知中等比数列{an}满足a2+a4=20,a3+a5=40,构造关于首项和公比的方程组,解方程组求出首项和公比,可得an和Sn
解答:解:设等比数列的公比为q,
∵a2+a4=20,a3+a5=40,
∴a1q+a1q3=20,a1q2+a1q4=40,
解得a1=q=2
∴an=a1qn-1=2n
∴Sn=
a1(1-qn)
1-q
=
2(1-2n)
1-2
=2n+1-2
点评:本题考查的知识点是等比数列的前n项和,等比数列的通项公式,其中根据已知构造关于首项和公比的方程组,是解答的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

若等比数列{an}满足a1+a3=10,a4+a6=
5
4
,则数列{an}的公比q为(  )
A、
1
4
B、
1
2
C、2
D、8

查看答案和解析>>

科目:高中数学 来源: 题型:

若等比数列{an}满足anan+1=16n,则公比为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

若等比数列{an}满足a2a4=
1
2
,则a1a32a5=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

若等比数列{an}满足a1+a2=3,a2+a3=6,则a6=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•河池模拟)若等比数列{an}满足a4+a8=-3,则a6(a2+2a6+a10)=(  )

查看答案和解析>>

同步练习册答案