精英家教网 > 高中数学 > 题目详情

已知数学公式=(数学公式cosx,cosx),数学公式=(sinx,cosx)函数f(x)=数学公式数学公式
(1)求函数f(x)的解析式;
(2)求函数f(x)的最小正周期和对称轴方程.

解:(1)∵=(cosx,cosx),=(sinx,cosx)
∴函数f(x)==sinxcosx+cos2x-
=sin2x+(1+cos2x)-=sin(2x+).
所以函数f(x)的解析式为:y=sin(2x+);
(2)根据三角函数周期公式,得f(x)的最小正周期T==π,
令2x+=+kπ(k∈Z),可得x=+kπ(k∈Z),
∴f(x)图象的对称轴方程为x=+kπ(k∈Z).
分析:(1)由二倍角的余弦公式和辅助角公式,化简得sin(2x+),即为函数f(x)的解析式;
(2)根据函数y=Asin(ωx+φ)的周期公式,可得函数的最小正周期T=π.再由正弦函数图象对称轴方程的公式,解关于x的等式,即可得到函数f(x)图象的对称轴方程.
点评:本题给出三角函数式,求函数图象的对称轴方程和周期,着重考查了三角恒等变换和三角函数的图象与性质等知识,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知
m
=(cosx,sinx),
n
=(cosx,2
3
cosx-sinx),f(x)=
m
n
+|
m
|,x∈(
12
,π].
(Ⅰ)求f(x)的最大值;
(Ⅱ)记△ABC的内角A、B、C的对边分别为a、b、c,若f(B)=-1,a=c=2,求
AB
BC

查看答案和解析>>

科目:高中数学 来源: 题型:

已知
m
=(sinx+cosx,
3
cosx)
n
=(cosx-sinx,2sinx)
,函数f(x)=
m
n

(Ⅰ)求x∈[-
π
6
π
3
]
时,函数f(x)的取值范围;
(Ⅱ)在△ABC中,a、b、c分别是角A、B、C、的对边,且a=
3
,b+c=3,f(A)=1,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=cosx(
3
sinx+cosx)

(1)当x∈[0,
π
2
]
,求函数f(x)的最大值及取得最大值时的x;
(2)若b、c分别是锐角△ABC的内角B、C的对边,且b•c=
6
-
2
,f(A)=
1
2
,试求△ABC的面积S.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•长宁区一模)已知
m
=(2cosx+2
3
sinx,1),
n
=(cosx,-y)
,满足
m
n
=0

(Ⅰ)将y表示为x的函数f(x),并求f(x)的最小正周期:
(Ⅱ)已知a,b,c分别为△ABC的三个内角A,B,C的对应边长,若f(
A
2
)=3
,且a=2,求b+c的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
=(cosx,4sinx-2),
b
=(8sinx,2sinx+1)
,x∈R,设函数f(x)=
a
b

(1)求函数f(x)的最大值;
(2)在△ABC中,A为锐角,角A,B,C的对边分别为a,b,c,f(A)=6,且△ABC的面积为3,b+c=2+3
2
,求a的值.

查看答案和解析>>

同步练习册答案