精英家教网 > 高中数学 > 题目详情

【题目】若集合A={x|kx2﹣2x﹣1=0}只有一个元素,则实数k的取值集合为(
A.{﹣1}
B.{0}
C.{﹣1,0}
D.(﹣∞,﹣1]∪{0}

【答案】C
【解析】解:由集合A={x|kx2﹣2x﹣1=0}中只有一个元素,
当k=0时,﹣2x﹣1=0,即x=﹣ ,A={﹣ },成立;
当k≠0时,△=4+4k=0,解得k=﹣1.A={x|﹣x2﹣2x﹣1=0}={﹣1},成立.
综上,k=0或﹣1.
故选:C.
【考点精析】关于本题考查的集合的表示方法-特定字母法,需要了解①自然语言法:用文字叙述的形式来描述集合.②列举法:把集合中的元素一一列举出来,写在大括号内表示集合.③描述法:{|具有的性质},其中为集合的代表元素.④图示法:用数轴或韦恩图来表示集合才能得出正确答案.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在四棱锥中,底面为正方形, 平面 分别是 的中点.

(Ⅰ)求证: 平面

(Ⅱ)求三棱锥的体积;

(Ⅲ)求证:平面平面

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数存在两个极值点.

(Ⅰ)求实数a的取值范围;

(Ⅱ)设分别是的两个极值点且,证明:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知曲线.

(1)当时,求曲线在处的切线方程;

2)过点作曲线的切线,若所有切线的斜率之和为1,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C 的右焦点为F,右顶点为A,设离心率为e,且满足,其中O为坐标原点.

(Ⅰ)求椭圆C的方程;

(Ⅱ)过点的直线l与椭圆交于MN两点,求△OMN面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,椭圆 的离心率为,直线ly=2上的点和椭圆上的点的距离的最小值为1.

(Ⅰ) 求椭圆的方程;

(Ⅱ) 已知椭圆的上顶点为A,点BC上的不同于A的两点,且点BC关于原点对称,直线ABAC分别交直线l于点EF.记直线的斜率分别为

① 求证: 为定值;

② 求△CEF的面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知abc>0,则在下列各选项中,二次函数f(x)=ax2+bx+c的图象不可能是(
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知.

(Ⅰ)求的单调区间;

(Ⅱ)设 为函数的两个零点,求证: .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,多面体中,四边形为平行四边形,其中,等边所在平面与平面垂直,平面,且.

(Ⅰ)点在棱上,且的重心,求证:平面

(Ⅱ)求平面与平面所成锐二面角的余弦值.

查看答案和解析>>

同步练习册答案