精英家教网 > 高中数学 > 题目详情
20.求下列函数的定义域:
(1)y=$\frac{1}{x+3}$+$\sqrt{-{x}^{2}-4x}$;
(2)y=$\frac{1}{\sqrt{6-5x+{x}^{2}}}$.

分析 根据函数成立的条件即可求函数的定义域.

解答 解:(1)要使函数有意义,则$\left\{\begin{array}{l}{x+3≠0}\\{-{x}^{2}-4x≥0}\end{array}\right.$,
即$\left\{\begin{array}{l}{x≠-3}\\{-4≤x≤0}\end{array}\right.$,即-4≤x<-3或-3<x≤0,
故函数的定义域为[-4,-3)∪(-3,0].
(2)要使函数有意义,则6-5x+x2>0,
解得x>3或x<2,
即函数的定义域为(-∞,2)∪(3,+∞).

点评 本题主要考查函数的定义域的求解,要求熟练掌握常见函数成立的条件.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

10.若函数f(x)=$\left\{\begin{array}{l}{a(x-1)+1,x<-1}\\{{a}^{-x},x≥-1}\end{array}\right.$(a>0,且a≠1)R上的单调函数,则实数a的取值范围是(  )
A.(0,$\frac{1}{3}$)B.($\frac{1}{3}$,1)C.(0,$\frac{1}{3}$]D.[$\frac{1}{3}$,1)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知函数f(x)=ax2+2(a-1)x+2在区间(-∞,1]上是减函数,则实数a的取值范围为[0,$\frac{1}{2}$].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知二次函数f(x)=x2-2x+3.
(1)当x∈[-2,0]时,求f(x)的最值;
(2)当x∈[-2,3]时,求f(x)的最值;
(3)当x∈[t,t+1]时,求f(x)的最小值g(t).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.化简:$\frac{sinx}{tanx-tanxsinx}$-$\frac{1+sinx}{cosx}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知函数f(x)=$\frac{n•{3}^{x}-2}{{3}^{x}+1}$为R上的奇函数,则n的值为2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.求函数y=-x2+4x+8的最值.
(1)x∈R;
(2)x∈[-3,0];
(3)x∈(3,6];
(4)x∈[-3,6].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.斜三棱柱的一个侧面的面积为10,这个侧面与它所对棱的距离等于6,求这个棱柱的体积.(提示:在AA1上取一点P,过P作棱柱的截面,使AA1垂直于这个截面)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.若集合A={x|ax2+x+2=0,a∈R}有两个子集,则a的取值范围是{0,$\frac{1}{8}$}.

查看答案和解析>>

同步练习册答案