精英家教网 > 高中数学 > 题目详情
直三棱柱ABC-A1B1C1中,AB=AA1,∠CAB=.

(1)证明:CB1⊥BA1
(2)已知AB=2,BC=,求三棱锥C1-ABA1的体积.
(1)证明详见解析;(2)

试题分析:(1)连结AB1,则AC⊥BA1.,又∵AB=AA1,∴四边形ABB1A1是正方形,∴BA1⊥AB1,由直线与平面垂直的判定定理可的BA1⊥平面CAB1,故CB1⊥BA1.(2)首先求出A1C1的值,由(1)知,A1C1⊥平面ABA1,即A1C1是三棱锥C1-ABA1的高,然后在求出△ABA1的面积,最后根据棱锥的体积公式求解即可.
试题解析:解:(1)证明:如图,连结AB1

∵ABC-A1B1C1是直三棱柱,∠CAB=
∴AC⊥平面ABB1A1,故AC⊥BA1.  3分
又∵AB=AA1,∴四边形ABB1A1是正方形,
∴BA1⊥AB1,又CA∩AB1=A.
∴BA1⊥平面CAB1,故CB1⊥BA1.                 6分
(2)∵AB=AA1=2,BC=,∴AC=A1C1=1,     8分
由(1)知,A1C1⊥平面ABA1,                    10分
∴VC1-ABA1S△ABA1·A1C1×2×1=.        12分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,四边形均为菱形,设相交于点,若,且.

(1)求证:
(2)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,直三棱柱中,,D是AC的中点.

(Ⅰ)求证:平面
(Ⅱ)求几何体的体积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知一个水平放置的正方形用斜二测画法作出的直观图是一个平行四边形,平行四边形中有一条边长为4,则此正方形的面积是(   )
A.16B.64C.16或64D.以上都不对

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

下列说法不正确的是(   )
A.圆柱的侧面展开图是一个矩形
B.圆锥中过圆锥轴的截面是一个等腰三角形
C.直角三角形绕它的一边旋转一周而形成的曲面所围成的几何体是一个圆锥
D.用一个平面截一个圆柱,所得截面可能是矩形

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

在平面几何里有射影定理:设△ABC的两边AB⊥AC,D是A点在BC上的射影,则AB2=BD·BC.拓展到空间,在四面体A—BCD中,DA⊥面ABC,点O是A在面BCD内的射影,且O在面BCD内,类比平面三角形射影定理,△ABC,△BOC,△BDC三者面积之间关系为           

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

.正三棱锥的底边长和高都是2,则此正三棱锥的斜高长度为(    )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

右图所示的直观图,其原来平面图形的面积是         .

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

一个几何体的三视图如图所示,其中主视图和左视图是腰长为1的两个全等的等腰直角三角形,则该几何体的外接球的体积为(  )
A. B.C.D.

查看答案和解析>>

同步练习册答案