精英家教网 > 高中数学 > 题目详情
已知f(x)是R上的奇函数,且当x∈(0,+∞)时f(x)=x(1+
3x
),则当x∈(-∞,0)时,f(x)等于(  )
A、-x(1+
3x
B、x(1+
3x
C、-x(1-
3x
D、x(1-
3x
考点:函数奇偶性的性质
专题:函数的性质及应用
分析:由f(x)是R上的奇函数,由x∈(-∞,0)时,-x∈(0,+∞),故f(-x)可代入已知解析式求解,再由奇函数可求出f(x).
解答: 解:当x∈(-∞,0)时,-x∈(0,+∞),
∵当x∈(0,+∞)时f(x)=x(1+
3x
),
∴f(-x)=-x(1+
3-x
)=-x(1-
3x
),
又∵f(x)是奇函数,
∴f(x)=-f(-x)=x(1-
3x
),
故选:D
点评:本题考查函数的奇偶性的应用、求函数的解析式.考查计算能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,在直四棱柱A1B1C1 D1-ABCD中,当底面四边形ABCD满足条件
 
时,有A1 B⊥B1 D1.(注:填上你认为正确的一种条件即可,不必考虑所有可能的情形.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知二次函数y=x2-2x-3的图象与x轴交于两点A,B(xA<xB),与y轴交于点C,△ABC的外接圆的圆心为M(1,-1),斜率为3的直线l与⊙M交于不同两点E,F,且满足ME⊥MF.
(1)求点A,B,C的坐标及⊙M的半径R的值;
(2)求直线l的方程;
(3)设P是直线l上的动点,且点A,C在l的同侧,求||PA|-|PC||的最大值及取得最大值时点P的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

求证:
1+sin2θ-cos2θ
1+sin2θ+cos2θ
=tanθ.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点A(2,3),B(5,4),C(10,8),若
AP
=
AB
AC
(λ∈R),求当λ为何值时:
(1)点P在直线y=x上?
(2)点P在第二象限内?

查看答案和解析>>

科目:高中数学 来源: 题型:

已知在平面直角坐标系xOy中,直线的参数方程为
x=t-3
y=
3
t
(t为参数),曲线C的参数方程为
x=2+cosθ
y=sinθ
(θ为参数).
(1)求直线和曲线C的普通方程;
(2)设点P是曲线C上的一个动点,求它到直线的距离的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知α是第四象限角,且sinα=-
4
5
,则tan2α的值为(  )
A、-
4
3
B、-
24
7
C、
24
7
D、
24
25

查看答案和解析>>

科目:高中数学 来源: 题型:

曲线
x=2+cosθ
y=-1+sinθ
(θ为参数)的对称中心(  )
A、在直线y=2x上
B、在直线y=-2x上
C、在直线y=x-3上
D、在直线y=x+3上

查看答案和解析>>

科目:高中数学 来源: 题型:

过点(0,4)作直线,使它与抛物线y2=4x仅有一个公共点,这样的直线有(  )
A、1条B、2条C、3条D、4条

查看答案和解析>>

同步练习册答案