精英家教网 > 高中数学 > 题目详情
函数f(x)=1+sin2x+cos2x的最小正周期是
π
π
分析:利用两角和与差的正弦函数将f(x)=1+sin2x+cos2x化简为:f(x)=
3
2
+
1
2
cos2x即可求得其最小正周期.
解答:解:∵f(x)=1+sin2x+cos2x=1+
1-cos2x
2
+cos2x=
3
2
+
1
2
cos2x,
∴函数f(x)=1+sin2x+cos2x的最小正周期T=
2
=π,
故答案为:π.
点评:本题考查三角函数的周期性及其求法,着重考查二倍角的余弦,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x),如果存在给定的实数对(a,b),使得f(a+x)•f(a-x)=b恒成立,则称f(x)为“S-函数”.
(1)判断函数f1(x)=x,f2(x)=3x是否是“S-函数”;
(2)若f3(x)=tanx是一个“S-函数”,求出所有满足条件的有序实数对(a,b);
(3)若定义域为R的函数f(x)是“S-函数”,且存在满足条件的有序实数对(0,1)和(1,4),当x∈[0,1]时,f(x)的值域为[1,2],求当x∈[-2012,2012]时函数f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数:f(x)=
x-a+1
a-x
(a为常数).
(1)当f(x)的定义域为[a+
1
2
,a+1]时,求函数f(x)的值域;
(2)试问:是否存在常数m使得f(x)+f(m-x)+2=0对定义域内的所有x都成立;若有求出m,若没有请说明理由.
(3)如果一个函数的定义域与值域相等,那么称这个函数为“自对应函数”.若函数f(x)在[s,t](a<s<t)上为“自对应函数”时,求实数a的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
1(1-x)n
,g(x)=aln(x-1),其中n∈N*,a为常数.
(1)当n=2时,求函数F(x)=f(x)+g(x)的极值;
(2)若对任意的正整数n,当s≥2,x≥2时,f(s)+g(x)≤x-1.求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=1-ax2(a>0,x>0),该函数图象在点P(x0,1-ax02) 处的切线为l,设切线l 分别交x 轴和y 轴于两点M和N.
(1)将△MON (O 为坐标原点)的面积S 表示为x0 的函数S(x0);
(2)若在x0=1处,S(x0)取得最小值,求此时a的值及S(x0)的最小值;
(3)若记M点的坐标为M(m,0),函数y=f(x) 的图象与x轴交于点T(t,0),则m与t的大小关系如何?证明你的结论.

查看答案和解析>>

科目:高中数学 来源:2008-2009学年浙江省宁波市海曙区效实中学高三(上)期中数学试卷(文科)(解析版) 题型:解答题

函数f(x)=1-ax2(a>0,x>0),该函数图象在点P(x,1-ax2) 处的切线为l,设切线l 分别交x 轴和y 轴于两点M和N.
(1)将△MON (O 为坐标原点)的面积S 表示为x 的函数S(x);
(2)若在x=1处,S(x)取得最小值,求此时a的值及S(x)的最小值;
(3)若记M点的坐标为M(m,0),函数y=f(x) 的图象与x轴交于点T(t,0),则m与t的大小关系如何?证明你的结论.

查看答案和解析>>

同步练习册答案