精英家教网 > 高中数学 > 题目详情

在椭圆中,为椭圆上的一点,过坐标原点的直线交椭圆于两点,其中在第一象限,过轴的垂线,垂足为,连接,

(1)若直线的斜率均存在,问它们的斜率之积是否为定值,若是,求出这个定值,若不是,说明理由;

(2)若的延长线与椭圆的交点,求证:.

 

 

 

【答案】

解:(1) 设

两式相减得,

……4分

(2)设的方程为代入,解得.

,则,于是.

故直线的斜率为其方程为

代入椭圆方程得

解得,因此得

于是直线的斜率为,因此

所以……10分.

 

【解析】略

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网已知在平面直角坐标系xOy中的一个椭圆,它的中心在原点,左焦点为F(-
3
,0)
,右顶点为D(2,0),设点A(1,
1
2
)

(1)求该椭圆的标准方程;
(2)若P是椭圆上的动点,求线段PA中点M的轨迹方程;
(3)过原点O的直线交椭圆于点B,C,求△ABC面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

某同学用《几何画板》研究椭圆的性质:打开《几何画板》软件,绘制某椭圆C1
x2
a2
+
y2
b2
=1,在椭圆上任意画一个点S,度量点S的坐标(xs,ys),如图1.
(1)拖动点S,发现当xs=
2
时,ys=0;当xs=0时,ys=1,试求椭圆C1的方程;
(2)该同学知圆具有性质:若E为圆O:x2+y2=r2(r>0)的弦AB的中点,则直线AB的斜率kAB与直线OE的斜率kOE的乘积kAB•kOE为定值.该同学在椭圆上构造两个不同的点A、B,并构造直线AB,再构造AB的中点E,经观察得:沿着椭圆C1,无论怎样拖动点A、B,椭圆也具有此性质.类比圆的这个性质,请写出椭圆C1的类似性质,并加以证明;
(3)拖动点A、B的过程中,如图2发现当点A与点B在C1在第一象限中的同一点时,直线AB刚好为C1的切线l,若l分别与x轴和y轴的正半轴交于C,D两点,求三角形OCD面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2008•闸北区二模)如图,椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
,A1、A2为椭圆C的左、右顶点.
(Ⅰ)设F1为椭圆C的左焦点,证明:当且仅当椭圆C上的点P在椭圆的左、右顶点时|PF1|取得最小值与最大值;
(Ⅱ)若椭圆C上的点到焦点距离的最大值为3,最小值为1.求椭圆C的标准方程;
(Ⅲ)若直线l:y=kx+m与(Ⅱ)中所述椭圆C相交于A,B两点(A,B不是左右顶点),且满足AA2⊥BA2,求证:直线l过定点,并求出该定点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

F1F2分别为椭圆C =1(ab>0)的左、右两个焦点.

(1)若椭圆C上的点A(1,)到F1F2两点的距离之和等于4,写出椭圆C的方程和焦点坐标;

(2)设点P是(1)中所得椭圆上的动点,当P在何位置时,最大,说明理由,并求出最大值。

查看答案和解析>>

科目:高中数学 来源:2011-2012学年山东省菏泽市高三5月高考冲刺题文科数学试卷(解析版) 题型:解答题

已知点为圆上的动点,且不在轴上,轴,垂足为,线段中点的轨迹为曲线,过定点任作一条与轴不垂直的直线,它与曲线交于两点。

(I)求曲线的方程;

(II)试证明:在轴上存在定点,使得总能被轴平分

【解析】第一问中设为曲线上的任意一点,则点在圆上,

,曲线的方程为

第二问中,设点的坐标为,直线的方程为,  ………………3分   

代入曲线的方程,可得 

,∴

确定结论直线与曲线总有两个公共点.

然后设点,的坐标分别, ,则,  

要使轴平分,只要得到。

(1)设为曲线上的任意一点,则点在圆上,

,曲线的方程为.  ………………2分       

(2)设点的坐标为,直线的方程为,  ………………3分   

代入曲线的方程,可得 ,……5分            

,∴

∴直线与曲线总有两个公共点.(也可根据点M在椭圆的内部得到此结论)

………………6分

设点,的坐标分别, ,则,   

要使轴平分,只要,            ………………9分

,        ………………10分

也就是

,即只要  ………………12分  

时,(*)对任意的s都成立,从而总能被轴平分.

所以在x轴上存在定点,使得总能被轴平分

 

查看答案和解析>>

同步练习册答案