精英家教网 > 高中数学 > 题目详情
已知{an }是a1=23,公差d为整数的等差数列,且前6项为正,第7项开始为负.
(1)求d的值;
(2)求前n项之和Sn 的最大值;
(3)当Sn 是正数时求n的最大值.
【答案】分析:(1)利用等差数列的通项公式列出a6>0,a7<0,求出d的值;
(2)根据d<0判断{an}是递减数列,再由a6>0,a7<0,得出n=6时,Sn取得最大值;
(3)由等差数列的前n项和公式列出不等式,解不等式即可.
解答:解:(1)由已知a6=a1+5d=23+5d>0,a7=a1+6d=23+6d<0,
解得:-<d<-,又d∈Z,∴d=-4
(2)∵d<0,∴{an}是递减数列,又a6>0,a7<0
∴当n=6时,Sn取得最大值,S6=6×23+(-4)=78
(3)Sn=23n+(-4)>0,整理得:n(50-4n)>0
∴0<n<,又n∈N*,
所求n的最大值为12.
点评:本题考查了等差数列的性质、通项公式以及前n项和公式,(2)问d<0判断{an}是递减数列,是解题的关键,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

9、已知{an}:是首项为1的等差数列,且a2是a1,a5的等比中项,且an+1>an,则{an}的前n项和Sn=
n2

查看答案和解析>>

科目:高中数学 来源: 题型:

在数列{an}中,已知an≥1,a1=1,且an+1-an=
2
an+1+an-1
,n∈N*
(Ⅰ)记bn=(an-
1
2
2,n∈N*,证明{bn}是等差数列,并求数列{an}的通项公式;
(Ⅱ)问:数列{an}中是否存在正整数项?请做出判断并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

在数列{an}中,已知an≥1,a1=1,且an+1-an=
2
an+1+an-1
,n∈N*

(1)记bn=(an-
1
2
)2,n∈N*
,证明:数列{bn}是等差数列,并求数列{an}的通项公式;
(2)设cn=(2an-1)2,求
1
c1c2
+
1
c2c3
+…+
1
cncn+1
的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•淮南二模)在数列{an}中,已知an≥1,a1=1,且an+1-an=
2
an+1+an-1
,n∈N+
(1)记bn=(an-
1
2
2,n∈N+,求证:数列{bn}是等差数列;
(2)求{an}的通项公式;
(3)对?k∈N+,是否总?m∈N+使得an=k?若存在,求出m的值,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知{an}(n是正整数)是首项为a1,公比为q的等比数列.

(1)求和:

(2)由(1)的结果归纳概括出关于正整数n的一个结论,并加以证明.

 

查看答案和解析>>

同步练习册答案