已知{an}(n是正整数)是首项为a1,公比为q的等比数列.
(1)求和:;
(2)由(1)的结果归纳概括出关于正整数n的一个结论,并加以证明.
科目:高中数学 来源: 题型:
2 |
an+1+an-1 |
1 |
2 |
查看答案和解析>>
科目:高中数学 来源: 题型:
1 |
2 |
x |
1-x |
OM |
1 |
2 |
OA |
OB |
1 |
2 |
1 |
n |
2 |
n |
n-1 |
n |
1 |
(Sn+1)(Sn+1+1) |
查看答案和解析>>
科目:高中数学 来源: 题型:
|
|
查看答案和解析>>
科目:高中数学 来源:2007年普通高等学校招生全国统一考试、理科数学(上海卷) 题型:044
若有穷数列a1,a2…an(n是正整数),满足a1=an,a2=an-1…an=a1即ai=an-I+1(i是正整数,且1≤i≤n),就称该数列为“对称数列”.
(1)已知数列{bn}是项数为7的对称数列,且b1,b2,b3,b4成等差数列,b1=2,b4=11,试写出{bn}的每一项
(2)已知{cn}是项数为2k-1(k≥1)的对称数列,且ck,ck+1…c2k-1构成首项为50,公差为-4的等差数列,数列{cn}的前2k-1项和为S2k-1,则当k为何值时,S2k-1取到最大值?最大值为多少?
(3)对于给定的正整数m>1,试写出所有项数不超过2 m的对称数列,使得1,2,22…2m-1成为数列中的连续项;当m>1500时,试求其中一个数列的前2008项和S2008
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com