【题目】设p:实数x满足x2﹣4ax+3a2<0,其中a>0; q:实数x满足 <0.
(1)若a=1,且p∨q为真,求实数x的取值范围;
(2)若p是q的必要不充分条件,求实数a的取值范围.
【答案】
(1)解:由x2﹣4ax+3a2<0,得(x﹣3a)(x﹣a)<0,
又a>0,所以a<x<3a,
当a=1时,1<x<3,即p为真时实数x的取值范围是1<x<3.
q为真时 等价于(x﹣2)(x﹣3)<0,得2<x<3,
即q为真时实数x的取值范围是2<x<3.
若p∨q为真,则实数x的取值范围是1<x<3
(2)解:p是q的必要不充分条件,等价于qp且p推不出q,
设A={x|a<x<3a},B={x|2<x<3},则BA;
则 ,
所以实数a的取值范围是1≤a≤2
【解析】(1)利用一元二次不等式的解法可化简命题p,q,若p∨q为真,则p,q至少有1个为真,即可得出;(2)根据p是q的必要不充分条件,即可得出.
科目:高中数学 来源: 题型:
【题目】如图,在海岸线 一侧有一休闲游乐场,游乐场的前一部分边界为曲线段 ,该曲线段是函数 , 的图像,图像的最高点为 .边界的中间部分为长1千米的直线段 ,且 .游乐场的后一部分边界是以 为圆心的一段圆弧 .
(1)求曲线段 的函数表达式;
(2)曲线段 上的入口 距海岸线 最近距离为1千米,现准备从入口 修一条笔直的景观路到 ,求景观路 长;
(3)如图,在扇形 区域内建一个平行四边形休闲区 ,平行四边形的一边在海岸线 上,一边在半径 上,另外一个顶点P在圆弧 上,且 ,求平行四边形休闲区 面积的最大值及此时 的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设函数f(x)在R上存在导函数f′(x),对于任意的实数x,都有f(x)=4x2﹣f(﹣x),当x∈(﹣∞,0)时,f′(x)+ <4x,若f(m+1)≤f(﹣m)+4m+2,则实数m的取值范围是( )
A.[﹣ ,+∞)
B.[﹣ ,+∞)
C.[﹣1,+∞)
D.[﹣2,+∞)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列命题中正确命题的个数是( ) ①对于命题p:x∈R,使得x2+x+1<0,则¬p:x∈R,均有x2+x+1>0;
②命题“已知x,y∈R,若x+y≠3,则x≠2或y≠1”是真命题;
③回归直线的斜率的估计值为1.23,样本点的中心为(4,5),则回归直线方程为 =1.23x+0.08;
④m=3是直线(m+3)x+my﹣2=0与直线mx﹣6y+5=0互相垂直的充要条件.
A.1
B.3
C.2
D.4
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,是函数y=f(x)的导函数f′(x)的图象,则下面判断正确的是( )
A.在区间(﹣2,1)上f(x)是增函数
B.在(1,3)上f(x)是减函数
C.在(4,5)上f(x)是增函数
D.当x=4时,f(x)取极大值
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=x﹣ ﹣2alnx(a∈R) (Ⅰ)若函数f(x)在x=2时取极值,求实数a的值;
(Ⅱ)若f(x)≥0对任意x∈[1,+∞)恒成立,求实数a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=ex﹣ax﹣1﹣ ,x∈R.
(Ⅰ)若a= ,求函数f(x)的单调区间;
(Ⅱ)若对任意x≥0都有f(x)≥0恒成立,求实数a的取值范围;
(Ⅲ)设函数F(x)=f(x)+f(﹣x)+2+x2 , 求证:F(1)F(2)…F(n)>(en+1+2) (n∈N*).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知F为双曲线C: (a>0,b>0)的右焦点,l1 , l2为C的两条渐近线,点A在l1上,且FA⊥l1 , 点B在l2上,且FB∥l1 , 若 ,则双曲线C的离心率为( )
A.
B.
C. 或
D. 或
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com