精英家教网 > 高中数学 > 题目详情

【题目】设函数f(x)在R上存在导函数f′(x),对于任意的实数x,都有f(x)=4x2﹣f(﹣x),当x∈(﹣∞,0)时,f′(x)+ <4x,若f(m+1)≤f(﹣m)+4m+2,则实数m的取值范围是( )
A.[﹣ ,+∞)
B.[﹣ ,+∞)
C.[﹣1,+∞)
D.[﹣2,+∞)

【答案】A
【解析】解:∵f(x)=4x2﹣f(﹣x),

∴f(x)﹣2x2+f(﹣x)﹣2x2=0,

设g(x)=f(x)﹣2x2,则g(x)+g(﹣x)=0,

∴函数g(x)为奇函数.

∵x∈(﹣∞,0)时,f′(x)+ <4x,

g′(x)=f′(x)﹣4x<﹣

故函数g(x)在(﹣∞,0)上是减函数,

故函数g(x)在(0,+∞)上也是减函数,

若f(m+1)≤f(﹣m)+4m+2,

则f(m+1)﹣2(m+1)2≤f(﹣m)﹣2m2

即g(m+1)<g(﹣m),

∴m+1≥﹣m,解得:m≥﹣

所以答案是:A.

【考点精析】认真审题,首先需要了解利用导数研究函数的单调性(一般的,函数的单调性与其导数的正负有如下关系: 在某个区间内,(1)如果,那么函数在这个区间单调递增;(2)如果,那么函数在这个区间单调递减).

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,已知直线.

(1)若直线轴上的截距为-2,求实数的值,并写出直线的截距式方程;

(2)若过点且平行于直线的直线的方程为: ,求实数的值,并求出两条平行直线之间的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在四棱锥P﹣ABCD中,PA⊥底面ABCD,底面ABCD是一直角梯形,∠BAD=90°,AD∥BC,AB=BC=a,PA= a,AD=2a.

(1)若AE⊥PD,E为垂足,求异面直线AE与CD所成角的余弦值;
(2)求平面PAB与平面PCD所成的锐二面角的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)求函数的定义域;

(2)判断函数的奇偶性,并说明理由;

(3)若函数,求函数的零点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆A:(x+1)2+y2=8,动圆M经过点B(1,0),且与圆A相切,O为坐标原点.
(Ⅰ)求动圆圆心M的轨迹C的方程;
(Ⅱ)直线l与曲线C相切于点M,且l与x轴、y轴分别交于P、Q两点,若 ,且λ∈[ ,2],求△OPQ面积S的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=xlnx﹣ x2﹣x+a(a∈R)在其定义域内有两个不同的极值点.
(Ⅰ)求a的取值范围;
(Ⅱ)设两个极值点分别为x1 , x2 , 证明:x1x2>e2

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图在正方体ABCD-A1B1C1D1EFPQMN分别是棱ABADDD1BB1A1B1A1D1的中点.求证

(1)直线BC1∥平面EFPQ.

(2)直线AC1⊥平面PQMN.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C: 的右焦点为F(1,0),且点(﹣1, )在椭圆C上.
(1)求椭圆C的标准方程;
(2)已知动直线l过点F,且与椭圆C交于A,B两点,试问x轴上是否存在定点Q,使得 恒成立?若存在,求出点Q的坐标,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】衡州市临枣中学高二某小组随机调查芙蓉社区160个人,以研究这一社区居民在20:00﹣22:00时间段的休闲方式与性别的关系,得到下面的数据表:

休闲方式
性别

看电视

看书

合计

20

100

120

20

20

40

合计

40

120

160

下面临界值表:

P(K2≥k0

0.15

0.10

0.05

0.025

0.010

0.005

0.001

k0

2.072

2.706

3.841

5.024

6.635

7.879

10.828


(Ⅰ)将此样本的频率估计为总体的概率,随机调查3名在该社区的男性,设调查的3人在这一时间段以看书为休闲方式的人数为随机变量X,求X的分别列和期望;
(Ⅱ)根据以上数据,能否有99%的把握认为“在20:00﹣22:00时间段的休闲方式与性别有关系”?

查看答案和解析>>

同步练习册答案