精英家教网 > 高中数学 > 题目详情

(12分)已知抛物线y2=8x上两个动点A、B及一个定点M(x0, y0),F是抛物线的焦点,且|AF|、|MF|、|BF|成等差数列,线段AB的垂直平分线与x轴交于一点N.

(1)求点N的坐标(用x0表示);

(2)过点N与MN垂直的直线交抛物线于P、Q两点,若|MN|=4,求△MPQ的面积.

 

【答案】

(1)N(x0+4, 0);(2)64。

【解析】主要考查直线与抛物线的位置关系,等差数列知识以及转化与化归思想的运用。

(1)设A(x1, y1)、B(x2、y2),由|AF|、|MF|、|BF|成等差数列得x1+x­2=2x0

得线段AB垂直平分线方程:

令y=0,得x=x0+4, 所以N(x0+4, 0).

(2)由M(x0, y0) , N(x0+4, 0), |MN|=4, 得x0=2.

由抛物线的对称性,可设M在第一象限,所以M(2, 4), N(6,0).

直线PQ: y=x-6, 由得△MPQ的面积是64.

思路拓展:解答此题,等差数列知识在于确定量与量之间的关系;注意充分利用抛物线的几何性质—对称性。

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知抛物线y2=8x的准线与双曲线
x2
a2
-
y2
b2
=1(a>0,b>0)
相交于A,B两点,双曲线的一条渐近线方程是y=2
2
x
,点F是抛物线的焦点,且△FAB是直角三角形,则双曲线的标准方程是(  )
A、
x2
16
-
y2
2
=1
B、x2-
y2
8
=1
C、
x2
2
-
y2
16
=1
D、
x2
8
-y2=1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知抛物线y2=8x与椭圆
x2
a2
+
y2
b2
=1有公共焦点F,且椭圆过点D(-
2
3
).
(1)求椭圆方程;
(2)点A、B是椭圆的上下顶点,点C为右顶点,记过点A、B、C的圆为⊙M,过点D作⊙M的切线l,求直线l的方程;
(3)过点A作互相垂直的两条直线分别交椭圆于点P、Q,则直线PQ是否经过定点,若是,求出该点坐标,若不经过,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•丰台区一模)已知抛物线y2=8x上一点P到焦点的距离是6,则点P的坐标是
(4,±4
2
)
(4,±4
2
)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•深圳一模)已知抛物线y2=8x的准线l与双曲线C:
x2
a2
-y2=1
相切,则双曲线C的离心率e=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知抛物线y2=8x的焦点是双曲线
x2
a2
-
y2
3
 
=1(a>0)
的右焦点,则双曲线的渐近线方程为
 

查看答案和解析>>

同步练习册答案