精英家教网 > 高中数学 > 题目详情
7、n∈N+,Cn1+2Cn2+3Cn3+…+nCnn=
n2n-1
分析:本题中所求和中的每一项kCnk刚好是二项式(1+x)n的通项Cnkxk的导数的系数,故可以先将二项式(1+x)n展开,然后两边求导,并将x取值为1即可求解为n2n-1.(此外本题也可以用倒序相加法求解)
解答:解:∵(1+x)n=Cn0+Cn1x1+Cn2x3+Cn3x3+…+Cnnxn,两边同时求导可得n(1+x)n-1=Cn1+2Cn2x1+3Cn3x2+…+nCnnxn-1
令x=1,得n2n-1=Cn1+2Cn2+3Cn3+…+nCnn
故答案为n2n-1
点评:本题主要考查二项式定理的应用,属于中等难度题型,在处理有关二项式定理有关系数问题时通常与二项式中x赋值有关.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(1)求证:Cn1+2Cn2+3Cn3+…+nCnn=n•2n-1 (n∈N*)
(2)设n是满足Cn0+2Cn1+3Cn2+…+(n+1)•Cnn<1000的最大正整数,求97n除以99的余数.
(3)当n∈N*且n>1时,求证2<(1+
1n
n<3.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x(x-
12
)的定义域为(n,n+1)(n∈N*),f(x)的函数值中所有整数的个数记为g(n).
(1)求出g(3)的值;
(2)求g(n)的表达式;
(3)若对于任意的n∈N*,不等式(Cn0+Cn1+…+Cnn)l≥g(n)-25(其中Cni,i=1,2,3,…,n为组合数)都成立,求实数l的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(1)求证:Cn1+2Cn2+3Cn3+…+nCnn=n•2n-1 (n∈N*)
(2)设n是满足Cn0+2Cn1+3Cn2+…+(n+1)•Cnn<1000的最大正整数,求97n除以99的余数.
(3)当n∈N*且n>1时,求证2<(1+数学公式n<3.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=x(x-
1
2
)的定义域为(n,n+1)(n∈N*),f(x)的函数值中所有整数的个数记为g(n).
(1)求出g(3)的值;
(2)求g(n)的表达式;
(3)若对于任意的n∈N*,不等式(Cn0+Cn1+…+Cnn)l≥g(n)-25(其中Cni,i=1,2,3,…,n为组合数)都成立,求实数l的最小值.

查看答案和解析>>

科目:高中数学 来源:2008-2009学年四川省成都市九校联考高二(下)期中数学试卷(理科)(解析版) 题型:解答题

(1)求证:Cn1+2Cn2+3Cn3+…+nCnn=n•2n-1 (n∈N*)
(2)设n是满足Cn+2Cn1+3Cn2+…+(n+1)•Cnn<1000的最大正整数,求97n除以99的余数.
(3)当n∈N*且n>1时,求证2<(1+n<3.

查看答案和解析>>

同步练习册答案