分析 由圆的方程找出圆心坐标和圆的半径r,显然直线x=1与圆相切;当与圆相切的直线斜率存在时,设直线的斜率为k,由直线过(1,3),写出直线的方程,根据直线与圆相切,得到圆心到直线的距离等于圆的半径,故利用点到直线的距离公式列出关于k的方程,求出方程的解得到k的值,确定出直线的方程,综上,得到所有满足题意的直线的方程.
解答 解:由圆x2+(y-1)2=1,得到圆心坐标为(0,1),半径为1,
显然此时直线x=1与圆x2+(y-1)2=1相切;
当与圆相切的直线斜率存在时,设斜率为k,
此时直线的方程为y-3=k(x-1),即kx-y+3-k=0,
∵直线与圆相切,
∴圆心到直线的距离d=$\frac{|2-k|}{\sqrt{{k}^{2}+1}}$=r=1,
整理得:(2-k)2=1+k2,解得:k=$\frac{3}{4}$,
此时直线的方程为3x-4y+9=0,
综上,所求直线的方程为:3x-4y+9=0或x=1.
故答案为x=1或3x-4y+9=0.
点评 此题考查了直线与圆的位置关系,涉及的知识有:圆的标准方程,直线的点斜式方程,点到直线的距离公式,利用了分类讨论的思想,当直线与圆相切时,圆心到直线的距离等于圆的半径,熟练掌握此性质是解本题的关键.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 2$\sqrt{2\sqrt{3}-3}$ | B. | 2-$\sqrt{3}$ | C. | 2$+\sqrt{3}$ | D. | $\sqrt{2}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com