精英家教网 > 高中数学 > 题目详情
1.已知直线l1:(m+3)x+4y=5和l2:2x+(m+5)y=8,当l1⊥l2时,求实数m的值$-\frac{13}{3}$.

分析 对m及其直线斜率分类讨论,利用直线相互垂直的充要条件即可得出.

解答 解:当m=-3或-5时,都不满足l1⊥l2,舍去.
当m≠-3或-5时,∵l1⊥l2,∴$-\frac{m+3}{4}$×$(-\frac{2}{m+5})$=-1,解得m=-$\frac{13}{3}$.
故答案为:-$\frac{13}{3}$.

点评 本题考查了直线相互垂直的充要条件,考查了分类讨论方法、推理能力与计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

11.将点p(-2,2)变换为p′(-4,1)的伸缩变换公式为(  )
A.$\left\{\begin{array}{l}{{x}^{′}=\frac{1}{2}x}\\{{y}^{′}=2y}\end{array}\right.$B.$\left\{\begin{array}{l}{x′=\frac{1}{3}x}\\{y′=2y}\end{array}\right.$C.$\left\{\begin{array}{l}{x′=2x}\\{y′=\frac{1}{2}y}\end{array}\right.$D.$\left\{\begin{array}{l}{x′=x}\\{y′=2y}\end{array}\right.$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.如图,某几何体的三视图是三个半径相等的圆及每个圆中两条互相垂直的半径.若该几何体的体积是$\frac{224π}{3}$,则它的表面积是(  )
A.17πB.18πC.60πD.68π

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=x-ln(x+k)(k>0).
(1)若f(x)的最小值为0,求k的值;
(2)当f(x)的最小值为0时,若对?x∈[0,+∞),有f(x)≤ax2恒成立,求实数a的最小值;
(3)当(2)成立时,证明:$\sum_{i=2}^n$f($\frac{2}{2i-1}$)<$\frac{2n-2}{2n-1}}$(n≥2,n∈N*).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知圆M:x2+(y-1)2=1和点A(1,3),则过点A与圆M相切的直线方程是x=1或3x-4y+9=0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知点P(2,2),圆C:x2+y2-8y=0,过点P的动直线l与圆C交于A,B两点,线段AB的中点为M,O为坐标原点.
(1)求M的轨迹方程;
(2)当|OP|=|OM|时,求l的方程及△POM的面积.
(3)在(2)的条件下过圆C:x2+y2-8y=0和l交点且面积最小的圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.设集合A={x|(x+1)(4-x)≤0},B={x|2a≤x≤a+2}.
(1)若A∩B≠∅,求实数a的取值范围;
(2)若A∩B=B,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.如图是一个几何体的三视图,其中俯视图中的曲线为四分之一圆,则该几何体的表面积为(  )
A.3B.$3+\frac{π}{2}$C.4D.$4-\frac{π}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知集合A={1,2,3,4},B={x|x<3},则A∩B=(  )
A.{1,2,3,4}B.{1,2}C.{3,4}D.{1,2,3}

查看答案和解析>>

同步练习册答案