分析 (1)由此能求出集合A={x|x≤-1或x≥4},由A∩B≠∅,从而能求出实数a的取值范围.
(2)由A∩B=B,得B⊆A,由此能求出实数a的取值范围.
解答 解:(1)A={x|(x+1)(4-x)≤0}=}={x|x≤-1或x≥4}
∵A∩B≠∅,
∴$\left\{\begin{array}{l}{2a≤a+2}\\{a+2≥4或2a≤-1}\end{array}\right.$,解得a≤-$\frac{1}{2}$或a=2,
(2)∵A∩B=B,∴B⊆A,
①若B=φ,则2a>a+2,∴a>2,
②若B≠φ,则$\left\{\begin{array}{l}{2a≤a+2}\\{2a≥4或a+2≤-1}\end{array}\right.$,解得a≥2或,∴a≤-3,
综上a>2,或a≤-3.
点评 本题考查交集和并集的求法,是基础题,解题时要认真审题,注意不等式性质的合理运用.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 2$\sqrt{2\sqrt{3}-3}$ | B. | 2-$\sqrt{3}$ | C. | 2$+\sqrt{3}$ | D. | $\sqrt{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 是有零点的减函数 | B. | 是没有零点的奇函数 | ||
| C. | 既是奇函数又是减函数 | D. | 既是奇函数又是增函数 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com