精英家教网 > 高中数学 > 题目详情
13.设集合A={x|(x+1)(4-x)≤0},B={x|2a≤x≤a+2}.
(1)若A∩B≠∅,求实数a的取值范围;
(2)若A∩B=B,求实数a的取值范围.

分析 (1)由此能求出集合A={x|x≤-1或x≥4},由A∩B≠∅,从而能求出实数a的取值范围.
(2)由A∩B=B,得B⊆A,由此能求出实数a的取值范围.

解答 解:(1)A={x|(x+1)(4-x)≤0}=}={x|x≤-1或x≥4}
∵A∩B≠∅,
∴$\left\{\begin{array}{l}{2a≤a+2}\\{a+2≥4或2a≤-1}\end{array}\right.$,解得a≤-$\frac{1}{2}$或a=2,
(2)∵A∩B=B,∴B⊆A,
①若B=φ,则2a>a+2,∴a>2,
②若B≠φ,则$\left\{\begin{array}{l}{2a≤a+2}\\{2a≥4或a+2≤-1}\end{array}\right.$,解得a≥2或,∴a≤-3,
综上a>2,或a≤-3.

点评 本题考查交集和并集的求法,是基础题,解题时要认真审题,注意不等式性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

3.若向量$\overrightarrow a$=(2,m),$\overrightarrow b$=(1,-4)满足$\overrightarrow a$⊥$\overrightarrow b$,则实数m的值为$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知a∈R,命题p:“?x∈[1,2],x2-a≥0”.命题q:“?x∈R,x2+2ax+2-a=0”.
(1)若命题p为真命题,求实数a的取值范围;
(2)确定p:中a的取值范围是q:中a的取值范围的什么条件(充分、必要等等)?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知直线l1:(m+3)x+4y=5和l2:2x+(m+5)y=8,当l1⊥l2时,求实数m的值$-\frac{13}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知集合A到B的映射f:x→y=2x+1,那么集合B中元素5在A中对应的元素是(  )
A.2B.5C.6D.8

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.为了解某一段公路汽车通过时的车速情况,现随机抽测了通过这段公路的200辆汽车的时速,所得数据均在区间[40,80]中,其频率分布直方图如图所示,则在抽测的200辆汽车中,时速在区间[40,60)内的汽车有80辆.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.函数y=f(x)(x∈R)满足:对一切x∈R,f(x)>0,f(x+1)=$\sqrt{7-{f}^{2}(x)}$时,当x∈[0,1)时,f(x)=$\left\{\begin{array}{l}{x+2(0≤x<\sqrt{5}-2)}\\{\sqrt{5}(\sqrt{5}-2≤x<1)}\end{array}\right.$,则f(2017-$\sqrt{3}$)=(  )
A.2$\sqrt{2\sqrt{3}-3}$B.2-$\sqrt{3}$C.2$+\sqrt{3}$D.$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.设函数f(x)=x-sinx,则函数f(x)在R上(  )
A.是有零点的减函数B.是没有零点的奇函数
C.既是奇函数又是减函数D.既是奇函数又是增函数

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.设函数f(x)=x2-2|x|-1.
(1)求证:f(x)是偶函数;
(2)画出函数f(x)的图象,并写出f(x)增区间;
(3)若方程f(x)=a有两个不相等的实数根,求实数a的取值范围.

查看答案和解析>>

同步练习册答案