精英家教网 > 高中数学 > 题目详情
设f(x)=(x-1)(x-2)(x-3)…(x-2010)则f′(2010)=
2009!
2009!
分析:将f(x)看成两个因式的乘积,其中一个因式为x-2010,利用积的导数公式求出f(x)的导函数,将x=2010代入求出值.
解答:解:∵f(x)=(x-1)(x-2)(x-3)…(x-2010),
∴f′(x)=[(x-1)(x-2)(x-3)…(x-2009)]′(x-2010)+[(x-1)(x-2)(x-3)…(x-2009)](x-2010)′
=[(x-1)(x-2)(x-3)…(x-2009)]′(x-2010)+[(x-1)(x-2)(x-3)…(x-2009)]
∴f′(2010)=2009×2008×…×1=2009!
故答案为2009!.
点评:本题考查求函数在某点处的导数,应该先利用导数的运算法则求出函数的导函数再求函数值,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设函数f(x)=a2x2(a>0),g(x)=blnx.
(1)若函数y=f(x)图象上的点到直线x-y-3=0距离的最小值为
2
,求a的值;
(2)关于x的不等式(x-1)2>f(x)的解集中的整数恰有3个,求实数a的取值范围;
(3)对于函数f(x)与g(x)定义域上的任意实数x,若存在常数k,m,使得f(x)≥kx+m和g(x)≤kx+m都成立,则称直线y=kx+m为函数f(x)与g(x)的“分界线”.设a=
2
2
,b=e,试探究f(x)与g(x)是否存在“分界线”?若存在,求出“分界线”的方程;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

设f(x)=msin(πx+α1)+ncos(πx+α2),其中m、n、α1、α2都是非零实数,若f(2011)=1则f(2012)=
-1
-1

查看答案和解析>>

科目:高中数学 来源: 题型:

fx)=xx-1)(x-2)…(x-100),则f′(0)等于(  )

A.100

B.0

C.100×99×98×…×3×2×1

D.1

查看答案和解析>>

科目:高中数学 来源: 题型:

fx)=xx-1)(x-2)…(x-100),则f′(0)等于(  )

A.100

B.0

C.100×99×98×…×3×2×1

D.1

查看答案和解析>>

科目:高中数学 来源:2007-2008学年浙江省温州市十校联合体高三(上)期末数学试卷(文科)(解析版) 题型:解答题

设f(x)是定义在R上的奇函数,g(x)与f(x)的图象关于直线x=1对称,若g(x)=a(x-2)-(x-2)3
(1)求f(x)的解析式;
(2)当x=1时,f(x)取得极值,证明:对任意x1,x2∈(-1,1),不等式|f(x1)-f(x2)|<4恒成立;
(3)若f(x)是[1,+∞)上的单调函数,且当x≥1,f(x)≥1时,有f[f(x)]=x,求证:f(x)=x

查看答案和解析>>

同步练习册答案