精英家教网 > 高中数学 > 题目详情

【题目】在平面直角坐标系xOy中,已知△ABC的顶点A(5,1),B(1,5).
(1)若A为直角△ABC的直角顶点,且顶点C在y轴上,求BC边所在直线方程;
(2)若等腰△ABC的底边为BC,且C为直线l:y=2x+3上一点,求点C的坐标.

【答案】
(1)解:设C(0,y),则 =﹣1,∴y=﹣4,

∴BC边所在直线方程 ,即9x﹣y﹣4=0;


(2)解:设C(a,2a+3),则

∵等腰△ABC的底边为BC,

∴(5﹣1)2+(1﹣5)2=(a﹣5)2+(2a+2)2

∴5a2﹣2a﹣3=0,

∴a=1或﹣

∴C(1,5)或(﹣ ).


【解析】(1)利用斜率关系建立方程,求出C的坐标,即可求BC边所在直线方程;(2)利用距离关系建立方程,即可求点C的坐标.
【考点精析】通过灵活运用一般式方程,掌握直线的一般式方程:关于的二元一次方程(A,B不同时为0)即可以解答此题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知二次函数f(x)满足f(x+1)﹣f(x)=2x(x∈R),且f(0)=1.
(1)求f(x)的解析式;
(2)若关于x的方程f(x)=x+m有区间(﹣1,2)上有唯一实数根,求实数的取值范围(注:相等的实数根算一个).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)=|2x﹣a|+|2x+1|(a>0),g(x)=x+2.
(1)当a=1时,求不等式f(x)≤g(x)的解集;
(2)若f(x)≥g(x)恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知f(x)=3x+m3﹣x为奇函数.
(1)求函数g(x)=f(x)﹣ 的零点;
(2)若对任意t∈R的都有f(t2+a2﹣a)+f(1+2at)≥0恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若圆C1:(x﹣1)2+(y+3)2=1与圆C2:(x﹣a)2+(y﹣b)2=1外离,过直线l:x﹣y﹣1=0上任意一点P分别做圆C1 , C2的切线,切点分别为M,N,且均保持|PM|=|PN|,则a+b=(
A.﹣2
B.﹣1
C.1
D.2

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在直三棱柱ABC﹣A1B1C1中,P,Q分别是AA1 , B1C1上的点,且AP=3A1P,B1C1=4B1Q.
(1)求证:PQ∥平面ABC1
(2)若AB=AA1 , BC=3,AC1=3,BC1= ,求证:平面ABC1⊥平面AA1C1C.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}满足(an+1﹣1)(an﹣1)=3(an﹣an+1),a1=2,令bn=
(1)求数列{bn}的通项公式;
(2)求数列{bn3n}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆C:x2+y2﹣2x+4y﹣4=0,是否存在斜率为1的直线l,使l被圆C截得的弦长AB为直径的圆过原点,若存在求出直线的方程l,若不存在说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)= 是定义在(1,1)上的奇函数,且f( )=
(1)求实数m,n的值
(2)用定义证明f(x)在(1,1)上是增函数.

查看答案和解析>>

同步练习册答案